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POLYNOMIALS WITH RESTRICTED COEFFICIENTS AND THEIR APPLICATIONS

PROMETHEUS INC.

ABSTRACT

Certain design restrictions growing out of antenna theory
yield a beautiful class of complex variables problems. Qur work was
devoted to formulating these problems in mathematical terms, solving
some of them, and beginning work on the others. One important result
achieved was the development of a new method of estimating Gaussian-
type exponential sumns. Improvements of our previous results in  null
steering and notch filtering were also attained. Other findings uwere
abtained in the arevas of: the robustness of polyncmials with
unimodular coefficients; the effect of errors in such standard and
crucial approximations as the far-field, Fresnel, and Doppler
compensation; the effect of errors in the npise covariance matrixg and

the Parabolic Equation Method in underuater acoustics,
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STATEMENT OF WORK

1. Convert the Kahane "Gauss Sums + Probabilistic Choices® proof into
a constructive one, and apply these polynomials to the design of louw
peak-factor signals and other engineering problems.

2. Investigate other possible methods of constructing Kahane-type
polynomials.

3. Investigate employing the Byrnes and Kahane polynomials to design
new reflection phase gratings, and consider the application of these
ideas to the quieting of an objects response to radar and active
sonar, and the design of baffles used to quist machinery noise from
submarines.

4. Consider the incorporation of the Prometheus methods of
analytically choosing shading coefficients into adaptive antenna
problems.

5. Determine the applicability of Kahane's wmethods to the Erdos
prablea involving polynomials with coefficients +1, and investigate
the minimum L* norm of such polynomials.

6. Investigate the minimization of the peak-factor in an inverse
Fourier transform, given the amplitude spectrum.

7. Conduct research into whether polynomials based upon the Byrnes

construction can be used to produce notched filters with more than one

notch.

—ii..
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I. INTRODUCTION

Polynomials with restricted coefficients have been ocbjects of
intense interest throughout twentieth century mathematics and
engineering. Despite the large amount of effort which has been
directed towards analyzing their properties, many deep and fascinating
questions remain. We continue our attack upon these problems,
employing both traditional and novel methods. This report, with its
appendices, presents the details of our recent work.

We have sgen that certain design restrictions growing out of
antenna theory yield a beautiful class of complex variables problems.
Moreover these problems form an integral part of classical
mathematical analysis, as the study of such polynomials was initiated
by G. H. Haray [46,p. 1991, and furthered by J. E. Littlewocod [28-381,
P. Erdos [201, and many others. Our research continuas to focus upon
both aspects of this remarkable intertuining between the disciplines
of pure mathematics and engineering.

The great success of J. P. Kahane (2461 in solving the
Littlewcend conjecture, by showing that there indeed exist polynomials
with unimodular coefficients whose modulus is essentially constant on
the wunit circle, lead us to reconsider the Erdos variant of this
problem. Namely, do such polynomials exist when the coefficients are
further restricted to be #17 Kahane's answar to Littlewood’s question
campleted a series of researches by Beller [2-5], Byrnes (13, 141],
Korver (271, Newman (3-S5, 343, and Littlewood himself. As just
mentioned the answer was an wunqualified yes, near constancy for
polynomials with unimodular coefficients is definitely available. In

-1-




;;dﬁ

-2

7

éﬁzﬁ "

contrast to this there has been very little progress 1in answering
Erdos’® question, and this has been ane focus of our research.

We are conducting a two pronged attack upon the Erdos
question. One tack we are taking 1is to attempt to exploit the
breakthrough of Kahane, which we believe was due to his ingenious use
of randomness and praobability in bhis construction. BRBehind his and
previous approaches was the idea of Gauss, viz. the *Gauss Sums.* To
put it quite simply we feel that Littlewood’s problem was wvanquished
by the *"equation®

Kahane=Gauss Sums + Probabilistic Choices
Sirce the Gauss Sums can also be written as polynomials with
coefficients +i, we devoted considerable study to such sums. Our
entively new approach to estimating them, together with the results
achievaed thustfar, are described below.

The above describes, to some extent, the first prong of cur
attack on the Erdos problem. The second is our approach to the
possibility of a negative answer to the Erdos question. Indeed
numerical evidence seems to favour this choice. A computational scheme
based wupon the Bose-Einstein model for Statistical Mechanics has
produced calculations of autocorrelations which seem to insist that
tha L* norm of a +1 type polynomial is >(&/95)2*/*(n)*72, and this if
true would surely yield the *no® answer to the Erdos problem. Since
this Bose-Einstein model can be followed up theoretically, and not
only numerically, we envision a possible proof of the neqgative answer,
if such is the case. What we have proven thusfar is that the L norm

of the well-known Shapiro polynomials of *1 type is (4/3)*7%(n)* 72
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asymptotically. Details of these results appear below, and 1in
Appendix B.

The locations of zeroces of polynomials with restricted
coefficients is of interest from both a theoretical and a practical
point of view. Under some circumstances, such as those encountered in
peak pouwer limited transmitting (401, the design of low peak-factor
[39] and low crest factor [71 signals, and the design of digital test
signals (361, one wants the moadulus of the polynomial to be as close
to constant as possible on the unit cirvcle. It seems reasonable that
such a condition would be achieved by polynomials vhose zeroes are as
far as possible from the unit circle. Certain applications, on the
other hand, vrequire zeroas at specific locatione on the wnit circle.
For example, the classical mathematical problem in notch filter design
is to produce a polynomial whose magnitude on the unit circle is close
to constant in almost all directions, but which hags a small number of
deep nulls (*notches®) at sgpecified points. In {146] the construction
of [13]) is employed to produce such a polynomial having one null, with
the added feature that all coefficients have the same magnitude. UWe
have expandad upon these methods to produce multiple notches, while
wmaintaining the near constancy of the magnitude of the polynomial at
all points on the unit circle excluding small neighborhoods of the
nwotches. Again, the results appear below.

Null steering is a crucial aspplication which requires locating
zerces at specific points on the wunit circle. There are several
factors which must be considered in the design of null steering

algorithms. In addition to the basic problem of placing the nulls the
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main beam must be steered, the width of the main lobe controlled, and
the sidelobe levels must be sufficiently below that of the main lobe.
Control of the sidelobe level is usually achieved by attenuating the
shading coefficients as one moves away from the center of the array.
Often these attenuation factors (Chebyshev, Taylor, etc.) are chosen
in advance, and may not be easily altered once the array is in place.
This leads directly to a beautiful mathematical question, similar to
the peak—factor problem in engineering discussed earlier, which we
have attacked by the methods employed to study polynomials with
caefficients of magnitude one:

Given the magnitude of the coefficients of a polynomial P, a
finite subset S of the unit circle C, and a point pél distinct
fram those in S, choose the phases of these coefficients so
that P(zi3=Q for all ¢S5, the maximum on  of IP(z)f aoccurs at
z=2p, and the maximum of iP(z)[ on a subset of € excluding an
appropriate interval (the beamwidth) arcund p is as small as
possible.

Currently the most widely used class of null steering methods
is known as adaptive nulling £1,9,24,25,32,45]1. Adaptive arrays have
developed over the past twenty-five years as the preferred method of
reducing the performance deterioration in signal reception systems
which is inevitably caused by undesired noise entering the system.
Sources tor this noise include multipath affects, electronic
countermeasures, clutter scatterer returns, antenna location errors,
array elament thermal noise, etc. The preliferation of such noise

sources has greatly increased the iaportance of interference
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suppression in essentially all applications. Althougbh such adaptive

methods as the Widrow least mean squares (LMS) and Howells—-Applebaum

sidelobe canceller have achieved considerable success, difficult

praoblems remain. Foremost among these are poor transient response,

signal cancellation vesulting from interaction between signal and

interference, excessive computation time, and sidelobe degradation

when jammer cancellation is attempted. A secondary problem 1is the
lack of control in adaptive algorithms of the dynamic range of the
weights.

These methods are indirect adaptive schemes, they do not

explicitly form an estimate of the directions of arrival of

interfering sources or explivitly steer nulls in those directions. A

scheme in which these two tasks are actually performed can be called a

direct adaptive algorithm. Thus one approach tu the solution of such

problems is to complement an appropriate indirect adaptive algorithm

with the analytic null steering methods described in (173, In  this
way the actual noise suppression achieved can be enhanced beyond that

which would be available through either adaptive or analytic methods

exclusively. We have begun to explore the poesibility of this “Direct
Adaptive Antenna System,® and will continue this work during Phase II.

Other questions which bhave been the focus wf our research

effort, and which we report on below, include: the robustness of

polynomials with unimodular coefficients; the effect of errors in such

standard and crucial approximations as the far-field, fFresnel, and

Doppler compensation; the effect of errors in the noise covariance

matrin; and the Parabolic Equation Method in underwater accustics.
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II. WEYL SUMS

In connection with the beamforming problems under
consideration, we were required to obtain certain trigonometric sum

estimates. In particular, sums such as

Z e‘sz
kel

made their appearance, and we desired "Gaussian-like" estimates for
these *Gaussian-like" sums. In short, we wanted the bound of O {n for
said sums taken over intervals, I, of length of order n and for t of

the ordev of 1/n.

The available method for handling such sums is that of Hermann
Weyl. Realizing the intractability of sums of exponentials of
quadratics, he reduced such sums to exponentials of linears (geometric
sums'!) by simply wmultiplying by their conjugates. Unfortunately,
however, his method leads to bounds like OJn logn instead of the On
that we desire.

To see the emergence oF this logn factor, let us examine his
procedure in same detail. Assume that I is an interval of length «n

and uwrite

2
S =:E: ettt 50 that
keI

,Sla = §§ = Z ettka 2-; e~1t.;2=z Elt(ka —,.zt.
kel L kJJeI
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If we then write k-j=v, so that x+j=2k-v, and call I. the intersection

of the two intervals, I and I translated by +v, we obtain

(1.) lsla =Z e—:.m}Z avitvi,
V=-(n-1) ke,

But here 1is the rub: one has the choice of throwing away the
factor e“*“ﬁ by “cvashing through* and thereby losing accuracy, or
being stuck witt the same intrarctable sum of exponentials of
quadratics. Weyl opted for the "crashing through.® The resulting bound

is (with ne=|Iy),

n-f : | n-i
Z sin n Ty dl
(—1*~JL~— < n+2 v-an—- < w+]£- Lot o<t<;1[, €.9.)
I Sintv - Tsintl h v 2h
va=(n-)) V= V=

and thereby emerges the onerocus lagn.

Our approach, then, is to make the other choice and face the
troublesome e=teve ¢+ the +trick being that this sum, thouglt still
intractable, can be directly related to our original sum. An estimate
of the desirved quantity is given ipn terms of itself, and this will
prove effective.

Sa let M be the exact bound for Z esr i
kel

aver all intervals, 1, of length <n and all real quadratic
polynomials, Plk), with leading coefficient tf#o. We will first treat
the restricted case where ot /2n. The general case will follow from

this one since this says ng T 72t so that a Qeneral sum obviously
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spirits into‘ént/ﬂq of these restricted ones. Our aim is ta show here
that M=0(t~*“=)} and this is the promised *“Gauss—like bound since our
real interest is in the case af t of exact order 1/n.

Ta begin with we need the following well known facts.
Lemma 1 (Summation by parts):

N
E:'akbk << PS(aw) V(by,?} where PS (partial sum bound) is

kel
Max ;S— du
!

, and V (total variation) is

men | om
n-1

min( lb\\, ‘b'l) +Z ] bkox"bk{ .
k=)

(In particular, if the b, are monotonic and of the same sign, then

Vibe) = Max( by Jbw] ).

Lemma 2 (Gibbs® phenomenon) The partial sums af the series

%?:j shL ke

are uniformly bounded by 2 (not by T/ /2, which might be guessed since

o)
=1

this is the Fourier series of (I-0)/2 on 002 ).
Letting Izlr+l,re+m], whare MmN, the same algabraic

manipulations as betore lead to

& e BByt cAv
Zes ceuz' cmuen)d | zoalm z & —— - & — )
7 21/n Vf
keI )
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with B = a+{(2r+1)t, A4 = a+(2r+2m+1)t.

To estimate the right hand sum, we split it intao

81 =Z and 82=Z
-d ‘

vcf'% vzt 2
For S2; we use our Lemma 1, with the a, the numeratars, and the b.=

1/sin vt. The PS term is clearly bounded by 2M and the V term, by

monotonicity, is bounded by

I T
{ —
sinth - 2£% ’

Al togeth2r, then, we get

Sa << TTM-s72

To bound 8y, u differant tack must be taken. We break S.

further into the two sums

cp :
-tV itvt- v
e, e
Im _—ET““ﬁf“ and Im . ” .
- ny S 3
veot t V(f"“lf. th v

In both cases, the dropping of the quadratic term in the wxponent
zaus@s an errar or <{<v3t in each term of the numerator. Thus, each of

these suas is replacaable by a sum

T = 5 -iﬁLKE;_ with an error
3in V'(‘:




Finally, we must effect the estimation of our two sums T.

This is achieved by writing it as

i vC
! =:6L§: , Z Sin vC (—“"".I iR ) -
Vet x Ve t'{ SinyvC vt :

The first of these is bounded by 2/t by Lemma 2, and crude methods

suffice for the second sum. Since

‘ ! X
SM}(__{< X (or sin x >T:‘J_f1')

in the interval (o, /2) (fun for the reader?), we obtain, by crashing

through, the estimate

E vt<l for this second sum.
L
Vet

Altogether, then, these many bounds combine tao give

AY 2 “% 4 T
' Zet(eu aketr) < n+‘7TP1t o o 2

t ¢
kel

and by picking a and m judiciously, this means that

9 T
MELNS ——— b — M,
n n =

Hence, as promised, we have estimated our bound, M, in terms

of itself. Finally, then, we write this as




B SRR - T, (a2 =
(M 1FF) £n = and obtain M S;JF n . < s

which is what we desired for the restricted sum. For the general sum
we need only multiply by KjigL:\and obtain
M< J‘(-;—_ +4mt -
Indeed, we have saved our precious logarithm!
Extension of the above results to the case where P(k) is a
third degree polynomial, and then to arbitrary polynomials, will be

pursued during Phase II.
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III. L* NORMS

Investigations were continued into the L* norm of polynomials
with coefficients +1. Revisions in the previogus paper [35] were made,
and the revised paper, which is Appendix B in this report, will appear
in the American Mathematical Monthly.

To describe the new results, we again employ the notation of
Appendix B. Thus,

P(z)= %3€gz“, each <=1 or -1, z=e2Tlie, @<e<1.

Xio

As shown previously,

q
UP“L\"‘ z-;i\(;,q‘m ‘J € €3 Cne
Oﬁ:)‘\(‘ﬁ‘mL“

A straightforward computation yields the lower bound n32+2[n/21 for
this sum. Also, by considering —P(z) and P(-z), it is clear that,
without loss of generality, it may be assumed that &=€=+1. Using
this, an exhaustive computer search for the minimum L9 norm was made
for n<22, on an IBM-XT compatible, with the results appearing in Table
1. Note that the lower bound n3+2[{n/2]1 1is achieved, with a unique
combination of ¢'s, for n=3,5,7,11,13, and it is also achieved, but
not uniquely, for n=4. Also observe that the number of computations
required to evaluate the sum grows very rapidly with n, and the
exhaustive search becomes impossible, even for the largest current
computers, when n reaches about 308. Thus, other methads are necessary
to decide the minimum L* norm of cuch polynomials and to possibly
answer the Erdos question mentioned in [351. Work on this problem is

“ontinuing.
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I¥. NOTCH FILTERS AND NULL STEERING

Investigations were also continued into notch filters
emplaying coefficients of equal magnitude. Revisions in the previous
paper [16] were made, and the revised paper, which is Appendix D in
this report, has been tentatively accepted (pending approval of the
changes) for publication in the IEEE Transactions on Acoustics, Speech
and Signal Processing.

The new results in this area involve the design of notch
filters with multiple notches, but still with dynamic vange equal to
1. The basic idea is t6 again begin with the function P(O) of [1 1,
but instead of removing the first N terms (i.e., all terms with k=0),
as was done in [! ] to obtain Q(&), all terms for several values of k
are removed. This resuits each time in a notch filter, with the
number of notches equal to the number of k's that are remaoved. Also,
as all nonzero coefficients have magnitude one, these remain filters
with unit dynamic range. The worth of this method may be seen in the
graphs on the next 18 pages, which exhibit filters of degree 8 to
2024, with from 1 to 4 notches.

Another previous paper £17], dealing with the important
subject of null steering, required revision. This was accomplished as
part of the current effort, and the resulting paper, which is Appendix
E in this report, will appear in the February 1988 issue of the IEEE

Transactions on Antennas and Propagation.
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A Single Notch Filter, Degree 8
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A Single Notch Filter, Degree 33
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A Single Notch Filter, Degree 99
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E A Single Notch Filter, Degree 224
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A Douvle Notch Filter, Degree 483
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A Dauble Notch Filter, Degree 483
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A Triple Notch Filter, Degree 483
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A Quadruple Notch Filter, Degree 483

01\11'1114!|||«|x|

05 -04 03 0.2

§ U W S | l 1 L1 1 l 11 ‘L#LJ i F U l Lol L1

T
)
<

LIS S S B SN S
—
o

0

01 02 0.3 04 0.5

—-24-

<

ffrrtlrrlrf!x(?‘!lli




fam ] (o] D
4 3 o I
_nh—‘ _nnu—hhh-ﬁcb hm
" i
P ]
< ,
. ]
e -
S .
o | |
1i] ny
i l 9
L 1
.@nt.._ -
ot ]
ot
' = e
£ j
e -4
0 4
=
E -
4 -
a .
3
& R
q =
9 i
Q -4
< i
o
- 1<
J=
1=
S !
K 1%
m-qqq—‘Wquj-q-‘ﬂﬂq v 1T T qn%Td}i‘jﬂq—xﬁ-‘-}i}‘—‘|11~i—
g 2 ] s ° = g 2 g
u&ﬁgm&@ﬂ.@@@@@wgmﬁggggggﬁmﬁ
B e Al o e o R T s




g

B

A Quadruple Notch Filter, Degree 483
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A Double Notch Filter, Degree 2824
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A Triple Natch Filter, Degree 2024
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A Quadruple Notch Filter, Degree 2024
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A Quadruple Notch Filter, Degree 2024
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V. APPROXIMATION ERRORS

Another prablem considered was the development of new methods
of incorporating Dappler into standard models of a target moving with
respect to an array. In order to make the question mathematically
tractable, the simple case of a target path parallel to a passive line
array of equally spaced elements was analyzed. Generalizations of the
concepts described herein will be explored in Phase II1.

Thus, suppose a moving target is generating a signal s(%)
which is being received by an N-element line array with interslement
spacing d. Let v,(t) be the distance at time t between the target and
the n—th array element AL(i<niN), y be the perpendicular distance
between the target path and the line of the array, « be the speed of
the signal, v be the speed of the target, and Tna(t) = r,(ti/c be the
time delay from the targe® to A,. Meglecting Doppler (end noise) for
the moment,; the receivad signal at A, 12 an(t)=s@-T (t3/r (t).

The Doppler effect can be represented by a multiplicative
factor u in the tiae variable, so that s above becomes s(ut—T"(u?)).
If u were constant, the required transformation of this factor invo
frequency domain would be simple, namely, the Fourier transform Stw)
of s(t) would become (1/u)S{w/u). However, in actuality, u 1is a
function of both n and t, u=l+r./c. Here, re represents the rate of
change of ra(t) with respect to time and 1is negative when the target
is approaching A,. Onec approximate yet reasonable method of dealing
with the wvariable Doppler i tao assume that for each n, u changes

exactly once as the target moves, with this change ociurming at the

time to when the targat is exactly opposite the middle array element.

34—
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Letting x(t) be the target location at time ¢t and n'=L(N+1)/2], the

situation is given in figure 1.

Kaemnj Array
nz/ n:= n n:n’ n:N-I nzN
‘ed_,. . P . . . f . . ™ )

7 A

" d
‘z(o) x (é) Figure 31‘ (te)

r, (¢)

N
w

From this figure, clearly
x(t)=x(@)+vt and
o (t)=y2+(x(t)-x(ta)—-(n-n*)d)=.
To obtain a potentially useful estimate of r.'.., so as to
estimate u, let J=—-1 if t<t,, J'=+1 it t©ta, ,rbe the length of the
time interval over which the signal is measured, and r be the average

value of all r'-.(t),

ra—z_/( ra(t)dt.

wiy

Applying the Mean Value Theorem to the above equation for r,(t) yields

i
£y . > P ‘ '
v-,,"‘,,'=‘/.__ir-_‘/‘_ir - /—“_‘s >
v T“ Yn' Q‘/l_‘t__r \r r" >

z

2
where r. = y2+(x(t)-x(tz)-M-n*)d)* and Mm_ is between n and n'.
Approximating | by (n+n’)/2 and using

> 2
ra—rwy=(n-n' )d((n-n’ )d-2(x(t)-x(t,,))) gives
2

. . ~ . 4 '
o, n , v (:_]:'_£-~(¢({)~1(tg)! ~, -\i—(n-h\A
——“7-“- = T(n-n')d 7 \,.: (=) - 2t = (=)l T
w

 Since ry (t)=y2+(x(t)-x(ta))=,

> R
rn.ﬂ‘-———‘-"(i’g-a&) v=d \—-321— sz “':T Ve

n' ‘ r,.\!
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Combining the above, we see that

3
>
raxd V = 'é'; v+ -5-3- (n’-n)dv.

Finally, letting u®” be our approximation for u, so that

a
us=1+Xcd /1- 3+ 3= (nt-mray,
Y \ g

the Fourier transform of s(t) now becomes (1/u®)S(w/u® ), and this
quantity is employed in the processing of the received signal.

New methods of accounting for the effect of wavefront
curvature upon beamforming were also considered. A preliminary result

is given below, and this effort will continue in Phase II.

Referring to figure 3, the receiving array is again a line array

of N équally spaced elements, with interelement spacing d. The distance
from a particular source to the n-th receiving element is denoted by r+x,

(with x,=@), and f is the indicated angle from the first array element to

the source.

Source.

Figure A,
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& (rtug Yt=pd+((n=1)d)?*-2r (n-1)d cos $. (1)
% Assuming that the array length<{<+ and. neglecting all terms beycnd the
R

HS

first order, (1) yields

Xy ®((n=1)d)¥/2r - (n-1)d cos §. 2

o=y

Letting Ry ba the voltage response of the n—th element, and normalizing

so  tha*t R,=1, it follows that Ry=r/(r+x,). Now, with v, cenoting the

2]

output voltage and a, the shading coefficient of the n-th element, anc
assuming a sinusoidal input of frequency w, it follows that the output

voltage ¢t the array is

N N
V-Z;?,v,sz:a"(r/(r+x,)) exp(jut) exp(2YT jXy/Ai. (%)
n [}

Here A is the wavelength of the source, so that 2tIxy/A 1is the phase

delay from the first to the n—-th array eclement.

In most cases values for V will be obtained computationally, as a

closed form for the sum in (3 ) is= usually impossible to obtain,

L=

Howaver, if the shading cocefficients a, are all i, and if it is assumed

e

that the x, increasa linearly from x; to x,, then the closad form

salution for V is
;3w N B 10 . ‘
LS ERO) /N ﬂNaJ-{—y,,w/)

V=axp( jwt) .}3,1.:')‘1 r(/ J ?,F,V,., s,,.-—-)sl )(‘f')

G

N
o

where y,=(N-1)d*/2r - d cos ¢.

70“.‘
ST

Zd

To derive (4), observe that the assumption that x, increases

linearly from x, (=Q) to x,, when coabined with (2), yields

; L "
D
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3
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7-,,:-"—"—1. a:(n-r)((N-’)d a(casﬁ (n;

N=-| N _er
with y, defined as in (Y4) . From (3 ), the fact that all a,=1, and the

assumption that array length<<{r, follows

A (h-ly et AT
J . W —_—
r > yN J JT (n-l) Wt
2 —— O e z(l-(h-l){&—)e )’NQJ .

Vn* r+(n-1)7~ (b)

Defining

N J‘ury"u(n-lj JrmyuN

Wey = =
Ut L ® j~e U P

n=

it follows from (B) and the termuwise differentiation of () that

- Z we e (3) ey (#]). @

TTJy M(NH)

Since

1((4):_ LTI sin (ﬂ'yyuN‘)_ _ Ne'ﬂ\j)‘,ufﬂ-l)

|~ e TiNY sin (T, «) '

(4.} ig an immadiate consequence of (&) , (1) , and (8 ),

Figqure 3. Configuration for the Fresnel Approximation
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Next we analyze the error in the Fresnel Approximation
which, for R-r in figure 3, is
R-r=v sind+(v2cos2e)/2r.
This approximation, useful when v<<{r (and even more useful when 6-is

small), arises by truncating the power series expansion of the square

root in the equation

>
R--r/u% +25 sin o
\ g

To estimate the error in this approximation, we require more detail in

the diagram, as in figure 4.

X

Fijme, ¢

By the law of sines,

v/sin({d+1)/2)=(R-r)/sin(O+Y/2), ovr

v/cos(Y/2)=(R-r})/(sind cos¥/2+cosO sint/2), so




"

e =

T

r
b—l»

R

&1

R-r = v sind + v cos® tan¥/2=v sin® + v coso (1-cos?¥) /sin?. (%)
From the law of cosines, cos Y =(r2+R2-y2)}/ZrR, and from the
law of sines, v/sint=R/sin(6+1V2)=R/cos®; so sint=vcos0/R. Inserting

these in the expression for R-r, we get

>
N Y‘&R"v
R-r = v sin® + v caost (R/v coso)(1- oy }
& R}. - > (R"v}a
= v sin® + R l;i;r;*L = v sind + jL—i:T'“-‘ .
Denoting the desired error by E, we have
E=R-r-v sinO-vZcos™e/2r
pe * 2 <
. v -(R~v) v - (R=y)
=R-vr-v sind - — + <y —Vv2cos326/2r
=v2(1-cos20~(R—r)2/v2)/2r
P
AR ST 1
= e (sind - v I(sind + WV )
\Jﬁ .
= ;::‘(—cosﬁ-taﬁiV&)(251n3‘+ cog® tant/2,

where the last equality follows fraom (#). Our estimate comes from this
last expression. Olserve that far fixed v, the maximum of tan¥/2 will

occur when 9=-}/2, i.e., where the situation is as in figure 5.
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e=
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Figure 5.

Thus, [tan¥/2|<v/2y, so that

3
v . \4

ey

Also, for small enough ©, we certainly have F&nqu/g, so the final

22 B

estimate for this Fresnel Approximation error becomes
|e| < avessy™.
We now obtain a similar estimate for the near—-normal Fresnel

Approximation. Again referring to figure 3 above, this approximation

-~ 2=

is
R-rx{ (x+v)2—u3) f2y=xv/y + vZ/2Y.
It arises by differencing the truncated power series expansions of the

square vroots in

ngJ1+((x+v)/g)=, rey [14(x/7g) 2,

Since near—-normal incidence is being considered here, to estimate the

error we begin by assuming that lx{<v. An exact equation for R-r,

:
3 N .
o
pre=ed

also given above, is (agsuming €>0)
R-raxv/r + (v3~(R-pr)2)/2r.
Thus, the error which we wish to estimate, E#, is
E#=xv(1/y—-1/r)+vE(1/y-1/r)/24(R-r)3/2r

Note that E#>@, so that the exact value of R-r is less than the

—_l -
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L e
] BEs
i
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approximate value,

R
iy

R—r<i{xv/y+v=2/2y<3v2/2y. Also,
r—y=x=2/{r+y){x=/2y.

Putting these estimates into the abaove expression for Ex

& =

yields
BEXRSXIV/2ry= + x2v2/4ry= + 9v/8Bry=.
Since x<v and ri>y,

BKE#<{15v+/8y=,
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The presence of errors resulting from such causes as clutter
scatterer returns, element thermal noise, electronic counter measures,
antenna locatiaon errors, and multipath effects often gives rise to
ingtability in nonlinear high-resclution beamforming techniques. One
reason is that these methods can place undue emphasis upon unstable
eigenvectors of the noise covariance matrix [111. Hence the question
of how errcors in the entries of the noise covariance matrix effect the
basic properties of an array, such as its gain, i1s of interest.
Preliminary vresults in this regard may be found in Byrnes and Sullivan
£191, and a continuation and expansion of these ideas is presented in
Appendix F.

Beamforming enables an array to act as a spatial filter, by
enhancing detectability, resolution, and directional measurement of
plane wave signals. There are certain applications, however, where
beamforming can offer anly peripheral assistance, and other methods
are required. An important example in this vegard is low-frequency
detection in the ocean. Propagation loss modeling is a fundamental
tool applied to the detection of targets at medium to long ranges, and
the Parabolic Equation Method (PEM) has recently become a basic
technique in the attempt to improve the solvability and accuracy of
such models. Our investigations into the PEM, including the discovery
of certain inaccuracies in its derivation, are described in Appendix
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VI. ROBUSTNESS

We now report on additional progress in determining the
rubustnéss of trigonometric polynomials with unimodular coefficients.
As indicated in [181, we do this by estimating the maximum of
trigonometric polynomials with randon: coefficients. These randon
polynomials represent the deviation in frequency response of a linear,
equispaced antenna array caused by coefficient inaccuracy in the basic
unimodular polynomial of the array.

Let us considew togr Yhis expositicon the random casine
polynomial

Plt,w) = ?:Xk(m) cos kt,
o\

where the X.are independent, standard norma! random variables, denoted
X« i.1.d N(@,1). Our vesults apply immediately to the sine polynomial
ikasin kt and may also be generalized tg the random trigonometric

Ky

polynomial 2ixke‘“‘.
wion
We define
Mw) = Sup [Pt w))

and we wish to estimate P{o¢ <M< Xa}. Nate that n, the degree of
P{t,w), is a fixed, positive integer. Simple upper bounds for P{M)C(}
were obtained in our earlier work, and we now seek a lower bound for
this praobability to complete our estimation. In the future, we hope to
expand this work to include more general random coefficients. For now,
we limit ourselves to the normal case.

We give tuwo results. The first is less precise and less useful

than the second, but we include it to introduce a method of promising

simplicity which we hope to exploit later. The second is a

44—




generalization of a result of Salem and Zygmund [38] to our case.

After stating and proving these results, we shall compare their

precision with aother similar estimates.

,3'.
G-x)
2
i Proposition 1: (1) PCM>AY > 1 —~ /;_e:/_l_ where @<XYn/2,
v

a4
¢-3)

(2) PCH_(_bJSit:—/_:.—: where 8<2 < Vn/2.
n

Proposition 2: Let 6€(@,1). Then

PR
(1) PCMXVn logn +=3=ViTo, 22 —— 2\
=~ A

In particular, if d = (logn)-*,n23, we have

B
g
?
B
ﬁ or equivalently
g
B
g
§

st " N N i S

-y 2
Meer )
‘oo Joo ™ Y. \ -5 n
(2) PCM> Vn logn - I \/‘% = >2 |- = T
~

3o

Proof of Proposition 1:

We prove Proposition 1 (2).

2 A 2
» D a D 2 -2M e
Let >a. P(Hgb}#(-i ™ 2-3 P 2)=pPle 2 e >
By Markov’s Inequality,
x 2
28, 2w
PCMLB e  Efe > ). (9)

Evidently, M2(w)>P2(t,w) for every t€0B,2T1], and since

jal
P(t,w)~ N(@, 3 cos3®kt), we have
=)
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)

o
< -3,

=
-

*
-~
e

P (% u)
o ~ XZ (chi-square with one degree of freedom).
—,

Therefore, using the fact that the moment generating function ¢ of a

X= random variable is ¢c€) =/ for $<i/2.
ax »

2 g AT coste Xt
E(e "M)S_E(e > P )=E(e Lam 7‘, )
|
" ) “'—:' ﬁ' co vt ’

o=

Combining (9) and (18) yields

(1@)

Now let us ¥ind M >G and *¢L3,2IT2 which min:mize the vright side of

the above inequality. Cleariy, t=0@ is the correct value giving
n

Z. €cos®k+@=n and thus
'3
24
PMLA 3C —“1‘?\—__: =h(7). (11)
; vy

To find D which minimizes h\7‘), we have

32

a
N S =
L3 BV e v y— D
> [-__-'A ( 2 h ) .\l \

3 <) J
h (7\ )= “7“*—-*-:;\—"-*\-373:“
L‘- *“T i) )
by
2
' 79> A . b
Thus, h (2 =0 T (HT - D =0 o= A== -=

7

and A is obviously a minimum point of h. To insure A >0, we require 2

{VZ and substituting the critical value of Nin equation (11}, we

have
Lok
> "
[
P{ng_&}gp — giving the result.
v/ >

~H &~
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Proof of Proposition 2:
We follow the method in Salem and Zygmund {381, madifying
their results to fit our case. We begin wi h a preliminary lemma.
Lemma 1: Let Q(w) be a non-negative random variable satisfying
E(Q)2A>8 and E(Q=)<B where E denotes the mathematical expectatiomn.
Then, if d€@,1), P{Q>dAI>(1-d)=2A=/RB,
proof

Put B={w:Q(w)>dAY. Then { Q(w) dP (w) <BAP (D<) <SA
ﬂ(

deP = f,,,gdp - g‘ QdP > EQ-dA >A-dA = (1-d)A.

JEN a
Alsa, deP < (g 124p) {gQ"dP)

< P(Pnas2pasa,
Combining the above inequalities, we have (1—6)A§P(£ﬁ"2 B2, which
yields the conclusion of the lemma.

We wish to apply lemma | to the random variable

! v APt
Itw)=——\ @ dt.

AT °
To dn this, we must veri1fy that !(w) satisfies the hypotheses of the
lemma, and we must obtain the constants A and B.

My Tonelli's theoremJ

x o A s
\ - 7‘9(‘_.»\) \ /“l‘f %ZL‘Q‘;\'—
E(I) =—) Ele Jdt =— ) e W dt
Qﬁ ) AT o 3

-
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using the form of the moment gererating function of Pit,w) already

obtained. With the simple identity cos=2kt =%:£1+c052kt], we find

Py 7'%{3‘ W
2 T QSR
E(I) ==={ e g% ™ dt

xT X >

R Ao %}“
> e 27 (1+ 772 _cos2ktlidt = e .
() LA

2
20

So we have E(I) > e = A in lemma 1.

We now require a number B such that E(I=)<B toc satisfy the

second hypothesis of lemma 1. To do this, we write

VAt :m‘ PN CANY

12(w) = 5 it dv,
4| o
v AT T (A[P( %,»\))%-P(T,w)))
Then E(12) =ﬁqf§o g E(e dt dt

using Tonelli’s theorem.

15
Plt,w) + P(Yw) = & Xulw) (cos kt + cos k¥)
-1

v
1)
~ N(B, 3 {cos kt + cos kI)=)
LS
because the sum of independent normal randon variables is normal. We

thus have that the moment generating function of P(t,w) + P w) is

N .
Pt LTy - 2 T (Coe, ¥ cov, W 7))
E e - < =

’;v\ 2
T 2R (esnbeconnd)
P ¥

\ PR
E(I®) =—x { g e dt aor.
94T o

<

Then

Now (cos kt + cos kT)3=3= 1+-1c052kt +5 T cos2ki’ +2cos kt cas kT.
b

Put 8 = S(t, 1) = 3.(3 cos2kt +3 cos2k¥ + 2cos kt cos k).
Xy )
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This gives

2n ! aw
ECIZ) = @& q*‘;]:& g @

[« Q

5

vly

dt 4 (12)

To bound the final integral, we will use lemma 4.2.2 of Salem and
Zygmund which we state for functions of two variables.

Lemma 2 (Salem and Zygmund)

Let gix,y), afix¢<b, cfysd, be a bounded real function. Suppose

v 4
that {g(x,y)| <A and (b-a)~*{d-c)—* & g g®{xy,yldxdy = B. Then, for any
<

[+ S
positive number u,

d %
&
(b—a)—*(d-c)—* g g euatxenddxdy < 1+uV§+5;e“‘_

< (= W

-

\

d v

In the case when § {“ gix,yldxdy = 0, this inequality can be
<

replaced by

ré ° &
(b-a)~*(d-c)—3% ) { eua i uddudy < 1+ 3 eus,
[ G,

We apply lemma 2 to the function 8=5(t,T) for Ot2IT,

0<Y¥42iY. To verify the necessary hypotheses, first note that

B

2T awW
( § s, vater = o.
- S

The set of 3n functions fcos2kt, cosZkt, caoskt cosZkT k=1,enl is an
ortheogonal system over the square of integration. This leads to

PRI iy
:;}a § § sat,mat or
) L4

P T R A LK A R : N K B e R o -
B R N Y R B T B N A N T N i S N e

' %




2T o
.\—,‘ n \ .
= 47 2 5. 3§ Cos®2kt+y cos22ki+4cos?kt cosZkTIdtdy
o

Xz} [ h

—

} A
=(3 +3 +1'n =2 n = B of lemma 2.

Evidently, lS(t,T))g 3In=A of lemma 2. Thus, the hypotheses of lemma 2

are satisfied and we obtain, with u=73g\,

AP | R *
7 aer) s 2
PGS WOURCLEE gl
AR 1w
Applying this to equation (12) gives
\')h
2w 5 ah
E(I%) < e® (ri1+57 e "1 =3 of lemma 1.
2
Recall that we have obtained E(I) > e ™ = A of lemma 1. Thus, we
apply lemma 1 to obtain
2
2 (=&
LI > de¥7 3> T avEn for d€d,1). adn

b RN

To prove proposition 2, we note that for every 2 >0, t&0,2T31

AP W) s el
and w, we have e L e - Applying ¥ g dt to both sides of the
o
A m(w\l
inequality yields I(w)<e for each 2 >@. If we use this with (13,
we get 2
A

»? .
TN (v~&,
)P{I)ée ) 2 l+‘§ Q_i”’r‘;
LR PN
-5@-

RIS
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Now put A =4\/252ip the inequality to obtain preposition 2(1) and

then substitute d =(logn)=*, n>3, to obtain praogosition 2(2).

Discussion of Results
We now examine propositions 1 and 2 and compare them te other
similar estimates. An excellent standard of comparison is the recent

asymptotic result of Turkman and Walker L4411 that

ourn [TA-
- ) 3
lim P ? A $x} = expl-e—»]
n—) ® —_ f

o NI
> \OSV\

for every real number x. Roughly, this says that for large n, M=M, is
o

centered near Vn logn with dispersion of the order of \osn . The
difficulty in applying this result ig that, for a given n, it ig not

known how close the distribution of

Yoo V. \/—_—;"
s ~
M- fnisan 79 \oq wn

i

—

e Yoy n
AT

LA

is to the limiting distribution.

Camparing this vesult to Proposition 2(2) shows that our
centering constants closely resemble those of Turkman and Walker and
suggests that the bounds obtained in Proposition 2 are indeed tight.
In addition, the lcwer bound of Praoposition 2(2) is better than a
similar bound obtained by Gersho, Gopinath and Odlyzka (221 in the
second part of their theorem. The Gersho bound, however, applies to a
aore general class of random trigocnometric polynomials. It is obvious

that the bounds aof Proposition 2 are auch superior to those of

...51...
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Proposition 1, which applies only when B< Vn/2, which is far below the
central values of M. Proposition 1 has been included only to
illustrate a simple but promising method which we hope to exploit in
the future.

The future program is to generalize the methods of Proposition
2 to trigonometric polynomials with independent random coefficients
which are not necessarily normally distributed. Of particular interest
iz the case of uniformly d .stributed coefficients which represent
digital or round-off errors. While the applicability of the methods of
Salem and Zygmund to the attainment of an upper bound for P(M >X) has
been noted by Gersho, et al and others, no@ne, to our knowledge, has
used these methaods to obtain a lower bound as we have done in
Proposition 2. This development offers hope for improved probablistic
estimates of the maximum of trigonometric polynomials with general

random coefficients.
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APPENDIX A
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1. Newman, D.J. and Byrnes, J.S., The L* Norm of a Polynomial with
Coefficients +1 (revised version), American Mathematical Monthily (to
appear).

2. Buyrnesy J.S. and Newman, D.J., Null Steering Employing Polynomials
with Restricted Coefficients (revised version), IEEE Transactions on
Arntennas and Propagation {to appear February, 1988)

3. Byrnes, J.S., A Notch Filter Employing Coefficients of Equal
Magnitude (revised version), (submitted to IEEE Transactions on
Acoustics, Speech and Signal Processing).

4, Byrnes, J.5., An Analysis of the Parabolic Equation Method and its
Applications, (submitted to IEEE Journal of Oceanic Enginesring).

5. Byrnes, J.S., Error Estimates Resgulting from the Norms of Certain
Noise Covariance Matrices, (to be submitted to the Journal of Sound
and Vibration).
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A-I1I. INTERACTIONS

Sl ]

>,
B 20

~I. Invited Papers Presented by J. S. Byrnes.

1. Naval Weapons Center, China Lakes, C&, 20 April, 1987

] IO

2. University of Maryland Department of Mathematics, 27 April,
i987

ey
bt

b

3. Royal Institute of Technology Department of Mathematics,
Stockholm, 25 June, 1987

4. NATO Advanced Study Institute on Electromagnetic Modeling
and Measurements for Analysis and for Synthesis Prcoblems,
Tuscany, Italy, 18 August, 1987

5. University of Montreal Mathematics Research Institute, 10
November, 1987

II. Invited Paper Presented by Stephen Boyd

i. Naval Weapons Center, China Lakes, CA, 20 April, 1987

III. Consultations on Potent.ial Air Force and Navy Applications of
Prometheus ldeas.

1. Stephen Boyd and James Byrnes consulted with Bob Dinger,
Bill Altop, Gary Hewer, Francis Canning, and Mike Mumford at
the Naval Weapons Center, China Lakes, CA, 2@ April, 1987.

2. James Byrnes consulted with Emanuel Vegh and Bill Gabriel
at the Naval Research Labaratory, Washington, DC, 24 April,
1987.

3. James Byrnes consulted with Neil Gerr and Jim Smith at the
Office of Naval Research, Arlington, VA, 24 April, 1987,

4, James Byrnes consulted with George Behnke of the MNIVRE
Corporation, 27 April, 1987 (this meeting took place at the
University of Maryland).

22

5. James Byrnes consulted with H. S. Ghapiro at the Royal
Institute of Technology, Stockholm, 24-26 June, 1987.

6. James Byrnes consulted with numerous people, sspecially E.
K. Miller of the Rockwell Science Center and the University of
Kansas, N. H. Farhat of the University of Pennsylvania, VY.
Rabhmat-Samii of the Jet Propulsion Laboratory. Tapan Sarkar of
Syracuse University, and Anton G. Tijhuis of Technische
Hogeschool Delft at the NATO Advanced Study Institute on
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Electromagnetic Modeling and Measursments for Analysis and for
Synthesis Problems, Tuscany, Italy, 10-21 August, 1987.

7. James Byrnas and DLonald Newman consulted with Bob
Mailloux, Hans Steyskal and Jeff Herd at the Rome Air
Development Center, Hanscomb AFB, Badford, MA, 24 August,
1987.

8. James Byrnes consulted with Jack Wallace, Mark Godino and
Mike Carpenter at Wright Patterson AFB, Dayton, OH, 25 August,
1987. This meeting was also attended by Arje Nachman of
AFOSR.

9. James Byrnes cansulted with Stanley Chamberlain and E. Ted
Bick at Raytheon Submarine Signal Division, Portsmouth, RI, 22
September, 1987.

18. James Byrnes consulted with many 8SBIR officials, DOD
representatives, and representatives of several large defense
contractors at the High Technology Conference, Salt Lake City,
UT, 17-18 November, 1987.

1.. James Byrnes visited Sun Micraosystems in Mountain View,
Ck, to evaluate the applicability of their engineering work
stations to the Prometheus Inc., Phase 11 effort,z0 AkWUnLujl9y7.
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The L* Norm of a Palynomial With Coefficients +1
Donald J. Newman and J. S. Byrnes
Prometheus Inc.
183 Mansfield Street
Sharon, MA 82007
A& classic unresolved question regarding polunomials
P(z)=nzl€k(n)z"
k=0
with coefficients €u(nr=€w=+1 is whether the maximum modulus of such a
polynomial on the unit civcle can be n:/2+g(nt“2). As shown by Kahane
{31, if complex coefficients of modulus 1 are allowed then not only is
it possible far this property to be satisfied, but the minimum modulus
can be n*“2+g(nts2) as well. Specifically, Kahaﬁe proved that for any n
there is a polynomial of degree n with coefficients of modulus one whose
modulus everywhere on the unit circle is nt*/2+0(n=7:%log n).

Erdos [2]1 had conjectured the existence of a ¢>@ such that, for
any polynomial P of the types described, lPun)(1+c)n"2, Clearly the
Kahane result disproved this conjecture for the modulus 1 case, but the
situation for cpoefficients +1 reamains open. Employing an eleqant
construction Shapiro 46,51 demonstrated the achievability of the order
of magnitude n*“2, but the maximum modulus of the Shapiro polynomials is
about (2n)t7=,

Since the L2 norm of any such polynomial 1is n*72, by the
RParseval Theorem, and the LP norm for any p{Mi1s a lowar bound for the
maximum modulus,it is natural to look at the L® norm for some p>2.
Motivated by these considerations, as well as the inherent tractability
of the L* norm, we examine the L* norm of such polynomials. As one

might exp=ct, this leads to several interesting combinatorial questions.

We provide answers tuo some of these, and conclude with a refined version
of the Erdos conjecture.
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Throughout the paper n will be a positive integer, P(z) will

denote the previously indicated polynomial of degree n—1 with

coefficients +i, and z will lie on the unit circle, z=e2™3:é  QALK1.

All integrals will be over 9<({0,11. We begin with a Lemma.
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Since a constant term occurs in this product if and only if Jtk=l+m,
the result follouws immediately.
Of interest is the expected value E( HP%;), it the

coefticients ;] are chosen at random.
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4
hegrem 1 E(NP%?)ﬁ2na—n.
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roaf Clearly if axactly I of the indices Jekyl,m are

identical, or i{f at least 3 of them are ditferent, them E({.{

L-€1=0. 1t therefore follows from the lemma that
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For each of the n(n=-1)}/2 pairs of integers p,q, Q@<p<q<n,
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there are 4 terms appearing in (1)’£r£1£r£$ being typical. The only

other terms in (1) are EP, B<p<n. Since all of these terms equal 1,

'R
E(”Pm?)=n+4(n)(n—1)/2=2n°~n,

completing the proof of Theorem 1.

We now observe the improvement that is achieved when this random

choice 1is replaced by the Shapiro coefficients. Shapiro’s polynomials
are defined, together with his auxiliary polynomials Q, by the
recurrence formulas

Pe(z)=Qal(2z)=1,

. m

m
Qn-.-gtz):p-.(Z)"za 0-(2)1 mza.

For the interested reader we point out articles by Brillhart et al [11

and Mendes-France and Tenenbaum U4]. The former shows that the Shapiro

coeffticients can be defined directly from the binary represenfation ot

while the latter relates them to paper-

the order of the polynomial,

folding sequences.

Theorem 2 If n=2% and P(z2) is the Shapiro polynomial of degree

"P”w=(4n’-(—1)"n)/3.
Proof It follows directly from (2) that

[Paes(z)] 2 +[Qmer(2)] 2=2( IPatz)] 2 + [Qu(2)] 2)

so that, as observed by Shapiro,
[Pm(2z)| Z2HQm(2)] 2=2m~12, (3
Now (2) and (3) uield

m -
|Pusctz)] 2=2m=s + 2Re(22 Qm(2)Pal2)). (4)
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Next we observe that zz Q. Qn is coamposed solely of

frequencies which are positive powers of 2z, SO that it can be thought

of as Qmﬁ;' where E; is the “"reversed" polynomial aof P . Thus

AT AT Y (XN

Since fsQF'is analytic and @ at the origin,

o [50 R (§5Y) = [Res)- flon9)"
(s) = & (15 =sfoMES 2[R 10l

Altagether then, we have

¥ e T 1
ﬂFm;,! = 2", 2//&/ (lm'—-]/’ml ) (2)
= 2™ o [IPI".

The remainder of the praoof is now gimply induction on k. The

result is obviously true for k=B, since ﬁ'(z)al. Furthermore, from

(5) and the inductive hypothesis

Iy

k

it fallows that
ey KR 2&Mrz( fn

8
f[&ﬂl = ¢ -2 3 = C 3 2 , as ruzw.mc(.

This completes the proot of Theorem 2.
Note :ﬂat Theorem 2. implies that the L* norm of the n=i=*
degree Shapiro polynomial is asymptotic to vn times the fourth root.
of 4/3%1.07457/n. Based upaon extensive numerical evidence employing
the Bose-Einstein statistics methodology of gtatistical Mechanics, we
conjecture that the Shapiro polynomials do not give the minimum L%

narm among all polynomials af the same degree with coefticients 21,

but that this minimum L® norm is asymptotically Vi times the fourth
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Observe that the truth of this conjecture would

with c=(6/5)37%~

root ot &/5m1.046b4Vn.

imply that of the Erdos con jecture mentioned earlier,

1=, 04664,
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APPENDIX C
An Analysis of the Parabolic Equation Method
and its Applications
J. S. Byrnes
Prometheus Inc.
Abstract

The parabolic equation (PE) method of solving the elliptic
wave equation in underwater acoustics was developed to handle the case
where the index of refraction n is dependent upon range as well as
upon depth, and possibly azimuth. It is used extensively in low-
frequency propagation loss modeling. Fundamental to the derivation of
all acoustic PE's is the assumption that a certain commutator is
negligibly small, and may be ignored. One purpose of this paper is to
point cut that the vanishing of the commutator actually implies that n
is range-independent. Thus, in many cases, the original reason for
the PE wmethod is defeated when this commutator is assumed to be
negligibly small. The second purpose of this paper is to describe and
analyze the current state of the art in the low-frequency applications
of the PE amethod, and to compare it to other methods of solving the
acoustic wave equation.

Key words: Parabolic Equation Method, Propagation Loss Modeling
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An Analysis of the Parabolic Equation Method
and its Applications
J. S. Byrnes
Prometheus Inc., 1@3 Mansfield St., Sharon, MA 02047 and

University of Massachusetts at Boston, Boston, MA 02125

I. Introduction

Knowledge of how sound propagates in the ocean, for different
environmental conditions and source/receiver configurations, is
necessary in order to achieve optimum sonar design. The estimation of
the spatial properties of the sound pressure field, as a function of_
source frequency, is the gual aof ocean acoustic modeling. To perform
this madeling effectively, the accustic loss mechanisms in the ocean
must bBbe accurately handled. These loss mechanisms include, in
additign to geametrical spreading loss, bottom reflections, volume
absorption, and scattering.

Various methods of handling acaustic wave propagation problems
exist, because no individual method adequately deals with the many
types of problems and conditions that one is likely to encuounter in a
variable acean environment. These wmethods include ray theory,
fastfield theory, normal wmode analysis, and the parabolic equation
sethod. An iaportant test of any particular method is its ability to
handle substantial variatieons in environmental paraceters, and to
accomplish this while using only a3 reasonable amount of coamputer tine.

The acoustic wave equation cannot be separated 1f the

environment varies in both depth and range, so that direct nunerical
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integration is required. Since the basic equation represents a three-
dimensional boundary value problem, there are currently no practical
methods available to solve the problem in this way. Directly
integrating the acoustic wave equation, with appropriate boundary
conditions, remains impractical due to the excessive computation
times, even taking into account the recent leaps forward in computer
technolagy. Thus some simplifying assumptions are always introduced
before the wave equation is solved. The parabolic equation (PE)
method is thought to represent a viable alternative, as it is an
approximation to the wave equation which lends itself tao practical
numerical solution.
I1. Range Independence in the Parabolic Equation Method
Study of the parabolic equation (PE) method was initiated by
Tappert and Hardin [42], in an attempt to deal with an ocean
environment in which the sound gpeed, and hence the index of
refraction, is dependent upon range as well as upon depth, and
possibly azimuth, Since 1974 the PE method has become the standard
way of dealing with this *range-dependent® case. However, this isg
theoretically incorrect, as a basic assumption necessary to the
derivation of the PE actually implies that the index of refraction is
independent of vange. To see why this is so, it is necessary to
examine the derivation of the PE in detail. A convenient reference in
this regard is £391, and we begin with equation (8) of this paper.
%%;éw +2iky 3-;': +=3 %J' 3—;‘? +ky¥{n*~1)u=0. £38.83
Here, r, 2z, and <O are the range, depth, and azimuthal variables

respectively, u=ulr,z,9) is the (unknown) modulation of the spatially
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varying part of the acoustic pressure, c=c(r,z,8) is the actual sound
speed, c, is a reference sound speed, n=n(r,z,@&)=g/c is the index of
refraction, w is the acoustic frequency in rad/sec, and kyz=w/c, 1is the
reference wave number. As usual,.the farfield assumption, kor >> 1, is
made.

Equation [38.81 may also be expressed in operator format:

(%—«rzikag%- +£g +§;‘)~; +ky H{n*=1))u=0. £38.111]

Tuo seemingly different methods of deriving the fundamental PE
have appeared in the literature, one employing [38.81 and the other
[38.i13. To derive the PE from [38.8]1, the “"paraxial approximation,*®
uy S, is made. One supposed justification for this is the assumption
that u varies "slowly as a function of r on a wavelength scale, 1:e.,
K Ty Uy which implies  that |uyK<2ikeuyl® [29, p.4751. This
implication is clearly incorrect, yet it is the foundation upoan which
the paraxial approximation is based.

The second standard method of obtaining the PE is to replace

[38.111 with:

P . . - -
(S:-+xkc-xk00)(j%—*iko+xkaQ)u~0, 138,121
where the operator Q is defined by
) 3 t !‘; .
+(n%—1)+"a + T Y. .
Q={1+(n*-1) \6163 :::w e {38,131

The difference between the operators in [(38.11) and (38,121 is
the coamutator C=D,Q-QD,, where D, indicates the operator of partial
differentiation with respect to r. Thus, in order to obtain [38.12])
from [38.111, it is necessary to assume that C vanishes (i.e., 1is
negligibly small). After this is done, the second factor in {38.121,

which represents the incoaing wave, is neglected, yielding

C -3-




j)‘f""+ikou=ik,0m £38.141

When the square roct operator Q in [38.141 is replaced by the
linear terms of its Taylor series, the resulting equation is identical

to that obtained by applying the paraxial approximation to (38.81,

namely the standard three-dimensional (3D) PE,
. . a .
Jo - ko - e 9 e
o =3 (n*(r,z,0) 11u+3‘° PP +?“o* Jor ¢ £38.91

To see that the two basic assumptions employed as alternative
means of deriving the PE, namely the paraxial approximation and the
vanishing of the commutator C, are in fact the same, assuming that the
incoming wave is ignored, begin with the equivalent equations [(38.81 and
£38.111. Thent s .

3 N . ! J

U - B<=>( 5o +ikg=ikyL 1+ (n*-1 )+;§ ‘i‘?*’;‘i” ;; u=0

<a-><5‘\; *ik,,—ik‘,Q)uﬁG<=>(§: +ik@—ik{,o)(;‘;~ +ikg+iky Qlumd

<{=>CurB.

Therefore, it is necessary to assume that G=0 in order to derive
the PE. However, 1in the azimuthally independent two-dimensional (2D
case the vanishing of the coemutator actually implies that n is range-~
independent, while in the 3D case the assumption means that n is *very
nearly® range-independent. Thus, 1i1n many cases, the basic theoretical

reason for the PE mathod is deofeated when the commutatnr is assumed to

be negligibly small.
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The computation required to understand this is straightforward.
First, observe that the commutivity of D with ¢ implies that of D with
Q*, since DQ2= DQQ=QDQ=QQD=Q2D. Hence, the (approximate) vanishing of
D..Q-QD.. implies that of D.Q2-Q* D,.. However,

{D.Q® — Q2Dv1 u = [DL(1+X+Y) = (1+X+Y)D.]1 u

= 2(nn,. ~ ko™= r—3 D, *)u, where

X=n3-14k,~3D.); Y=(Kar)=2Dy=.

In the 2D case D, =8, so Cu=@ implies that n.,.=@8, i.e., the refractive
index is range—independent. In the 3D case, Cu=8 means that
n.=Dg2(u)/nk,* r3. Combined with the farfield assumption, it is clear
that n.,.»Q.

It is appropriate to oabserve that, in their discussion of the
approximation resulting from neglecting the commutator, Seigmann,>ét al
might have reached the same conclusion. A basic consideration at {hi%
point in [381 is that the term k,—* (n®-1)—%n,. must ba neqgligible. Since
= (and in fact n=1 at various points), this requires that n,./08. The
primary error occurs in equation (34) of {381, where "max" should be
replaced by “min,® and min |n3-1] =@.

Thus, it is necessary to consider the PE method, from a
theoretical viewpoint, as an alternative way of solving the range-
independent case, whereit is knoun to perform efficiently (see (4], for
example), as opposed to a method of salving the range-dependant case.
For the purpose of practical numerical computation, the range-dependent
case hags been attacked by approximating n with a function that is
piecewise constant in r. Numerical schemes employing the PE metheod,
such as the wide-angle split-step Fourier method (437 and the wide-angle

implicit finite diffeorence (IFD) scheme (51, incorporate
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this idea.
I1I. The Standard PE Method, and Alternatives

There are several basic assumptions which must be made in
order to apply the standard PE method. These include: the far-field
approximation; the index of refraction is piecewise constant; there is
only an outgoing wave; there is no scattering; the frequency is less
than 5@8@ Hz; the propagation angle is small (less than about 15%).
One way of possibly avoiding same of these assumptions is to use a
different method of solving the acoustic wave equation.

A careful analysis of the errors inherent in the standard PE
method, for the range-independent case, is carried out by Fitzgerald
C16]. The importance of choosing the reference sound speed, ¢,, t0 be
close to the average value of the phase velocities ¢4, for excited

modes, is quantitied. The PE errors are smaller for narrower bands in

-phase velocities or, using the ray mode analogy, the narrower the cone

of propagating rays. Also, it is shown that the PE method maintains a
given accuracy to longer ranges the lower the frequency. Since
computation time increases dramatically with increasing frequency in
the PE wmethod, thigs indicates that as low a frequency as practical
should be employed. Also, Fitzgerald derives a compact expression for
the wmaximum range of effectiveness of the PE method. When this 1is
applied ta a frequency of 180 Hz, in a range-independent environment,
with a simple surface and bottom, he estimates a maximum effective
range of 1l km. For a 1@ Hz source located near the surface, so that
th2 RGOSR aodes are the only excited propagating modes, this increases

dramatically to 15888 km. Overall, Fitzgerald shows that the PE
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method properly accounts for mode coupling when backscattering is
negligible, and properly accounts Tor mode propagation when there is a
small spread in mode wavenumbers. He suggests enhancad PE  methods
which might work when these conditions fail, but does not discuss the
greatly increased computation time that would likely be required tao
carry out these interesting suggestions.

A different approach is considered by DeSanto (131, who
relates the solutions of the general Helmholtz equation and the PE via
an integral transform, which is exact for range-independent sound
speads. However, there is no estimate given for the errcor introduced
whan the Helmholtz equation is replacaed by the PE. It appears that
DeSanto’s interesting ideas could lead to such estimates, which would
be important if they could be obtained.

An alternative approach to the numerical zomputation of the
wide-angle acoustic field in thz range-dependent case is given in (151
by Estes and Fain. They also proceed stepwise, by ewmployging a fully
defined field in one vertical plane to develap the fFigld at a plane a
fixed distance downh range. The propagation is composed of twoa parts,
somewhat analagous to the predictor/corretior methods in differential
equations: propagation through a hosogenecus space, and a correction
due to the fact that the environment is not homogenecus. They
approximata the sguare root operator by the terms of its Taylor series
up to order &, but the resuyitrs have not been coded, s0 numerical
evidence is unavailable. Although their method seems to avoid the
phase errors that are an inherent part of the standard (narrow-angle!}

PE approach, and thus pffers an improvement over that mathod, it
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appears that the recent development of the wide—angle PE supercedes

the results of Estes and Fain. Another attempt, the first order
continued fraction approximation of Berkhout {41, is equivalent tgo tre
standard narrow angle approximation, anc hig second order continued
fraction result is just the Claerbout (wide-angle) approximation.

Fitzgerald [16] discusses the possibility of employing normal
rade theory to harndle the range-dependent case, by dividing the range
intao intervals within each of which the sound speed is assumed to be
range—independent. Nate that, in view of the range—-independence of
the PE method described above, this technique is zlso required (and is
used extensively) when applying the PE method to the range-—dependent
case. This piecewise constant normal mode approach is not analyzed
by Fitzgerald. Other possible approaches to solving the acoustic wave
equation will be discussed belaow.

V. Solutiaon Methods for the Paraboalic Equation

The original numerical method of solving the PE is known as
the split-step {ourier method. The basic equation of the split-step
Fourier method is an exact salution to the PE only for canstant index
of refraction n. Since vertical sound speed changes are usually less
than 5%, and strong near-surfarce horizontal sound-speed gradients are
roughly @.1 o/s/km, the split-step wmethod will often give & wvalid
solution to the wave equation for a real anvironment.

The split-step method of solving the PE is fast and accurate
when bottom effects are weak, but less efficient when bottom
interaction 1s strong. A viable alternative 1s the implicit “inste

Mifference (IFD) wmethod, which i1s usually comparataively fast., ancg
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unconditionally stable. IFD is applicable when, as the PE solution is
marched out in range, the boundary information at the advanced range
step can be expressed in terms of the known values at the present
range step. The Lee-Botseas IFD model [251 is applicable to both
range—-dependent and range—independent environments, and can handle
arbitrary surface and bottom boundary conditions, horizontail
interfaces of layered media {with densities constant on each side of
the interface; gsee [29]1 and [311 for details of the treatment of
horizontal interfaces), attenuation, shallow or deep water, and
shallow to deep or deep to shallow propagation. As a matter of
necessity (as explained above), in a range—dependent environment the
SVP can be updated only abruptly at the range steps, and cannot change
within a step. Advantages of finite-difference methods over split-
step methods, in some idealized range—independent cases, are discussed
by Mcdaniel [3@1. A cohplete analysis of the well-posedness of the
IFD scheme for the solution of the wide-angle PE is given by St. Mary
and Lee [401.

The split-gtep algorithm solves a pure initial-value problem,
by imposing an artificial zero bottom ooundary condition and pressure-
release surface condition. The implicit finite difference (IFD)
scheme, aon the other hand, is designed to treat the bottom-boundary
condition exac!ly. Furthermore, since strong bottom interaction is
often associated with a wide prcopagation angle, the wide-angle IFD
scheme [9. could prove to be especially useful in handling cases where
both of these phenaomena occur.

The method of lines has also been employed to soclve the PE.

C -9-




This technique is described by Lee and Papadakis, who call it the ODE
method. One advantage of this approach is that, if the bottom
houndary conditions are known, na subbottom knowledge is required.
The ODE techninue needs considevable computer memory capacity, but if
this 1is available the method is efficient. The computer memcry
requirement, in fact, can be reduced by applying the Generalized Adams
Method (GAM) dezcribed by Lee, Jackson and Preiser [27]1. They claim'
that GAM reduces computation speed tremendously as well. McDaniel,
Saad and Lee [32] also discuss the GAM.
V. Bottaom Conditiaons

The broad effect of bottcm loss on ocean sound propagation is
an increasing loss with decreasing frequency. In actualitg,'lthe
bottom 1is constituted of many sedimentary layers, each acting
acoustically like a fluid. The sound speed in the bottom 1is usually
close to that of the water, but the attenuation ig much greater in the
battom. We describe some of the ways which tave hzen devised to treat
the various types af bottom conditions which can occur.

One method of representing the bottom, chosen by Guthrie and
Gordon [18], is as a series of fluid layers, where in the ith layer
the sound speed varies as

c(z)mcitl-zgi(z—zi)/c;] ‘

where ¢y and g; are the sound speed and sound speed gradient at the
top of the ith layer, and =z, is the layer depth. Their specific
sxample has 35 layers, with the fifth one having a small negative
gradient. This is necessary to satisfy the mechanics of the normal

mode starter program of the PE method, and has no effect on the
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solution, as 1its depth is below that to which significant acoustic
energy penetrates. A variable jump discontinuity in the sound speed,
of 114 on the slope and tapered to zero on reaching the ocean basins,

iz applied at the water—sediment interface. This allows for greater

" bottom reflectivity on the continental slope as compared with the

ocean basins, and compensates for the inability to iaclude density in
the model. Finally, they choose a constant attenuation coefficient in
the bottom of @.1f dB/km (f=frequency in Hz), corresponding to a
porosity of at least &5%.

It is obvious from this description that Guthrie and Gordon
carried out a wvery detailed analysis of the bottom structure and
properties before applying the PE method. As the PE method is quite
sensitive to errors in the knowledge of the bottom environment, a
similar bottom analysis will be required for any application aof the PE
method to propagation loss calculations to succeed.

When the split-step wmethod is used to solve the PE, the bottom
conditions must be modeled in such a way that the potential function
goes smoothly to zero at maximum depth. One way to accamplish this is
to extend the bottom so deep that the sound propagating downwards does
not reach the lower boundary within the horizontal range being
considered. This is not practical, however, because of the large
increase in the number of necessary FFT points that results. Another
possibility is to introduce a sufficiently high bottom absorption, but
it can’t be arbitrarily large, since it must represent the actual
attenuation. Mathsmatically this is accomplished by incorporating a

volume absorption coefficient, which increases rapidly with depth

(-11-




until the acoustic field becomes negligible, into the PE. In practice
a combination of these two methods can be employed, with the depth
extension and the absorption chosen to fit the particular environment
being considered. Another method of accounting for bottom absorption
is to add a small imaginary part to the wave number in the bottonm.

In many ocean environments differences in temperature,
pressure and salinity, as well as periodic deposits of sedimentary
material, create a layered medium in both the water and the bottom.
Various attempts have been made to adapt the PE wmethod to treat the
interfaces between such layers. In several papers [28, 29, 311,
McDaniel and Lee use finite difference techniques to handle such
boundary conditions. One drawback of this work is that the mesh
spacing is uniform, introducing computational difficuity when there
are mesh points which do not lie exactly on the interface boundary.
This problem was addressed by deG Gribble [12], who employsd a
variable mesh spacing. An implicit finite difference (IFD)
computational technique, incorporating the horizontal interface ideas
of McDaniel and Lee and the wide angle equation of Claerbout (111, is
currently undergoing extensive testing. It remains unclear houw
satisfactory these methods are, since substaritial experimental
evidence is lacking.

Although the PE wethod does not take the density change at the
water-sediment interface into counsideration, so that a someuwhat
greater hottom reflection loss than normal is to be expected, this is
unlikely to be a source of serious error. For example, a density

contrast of 1.25:1 causes a decrease in reflection laoss at low grazing

C-12-




R angles of less than @.5 dB/bounce, while a 5% jump in sound speed at

the sediment interface causes a more meaningful 4 to 5 dB decrease
risl.

vI. Ice and Other Environmental Concerns

The importance of accurate knowledge of environmental

conditions, when doing propagation loss calculations, is abundantly
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clear in the results described by Ellis and Chapman (141 for low-

xS

frequency shallow water propagation. In one experiment, curves of
prcpagation loss versus frequency at a range of 55 km are given for
two sites; one with a chalk bottom and the other a nearby site with a
sand bottom. For frequencies less than 1@8@ Hz, the loss observed over

the chalk bottom was more than 5 dB greater than that over the sand

= el BE o

bottom! Thus, certainly for shallow water low—-frequency propagation,
knowledge of the bottom conditions is absalutely essential if accurate
calculations are to be made.

A triangular ridge model has been shown by Greene and Stokes
{17] to give better agreement with backscatter data from Arctic sea
ice than a standard Gaussian model. Their model and data confirm the

observations of Mellen and Marsh [33] and Brown and Milne (7, 8, 341,

that such backscatter levels are much stronger than those in the open

ocean. This is caused by the large linear ridge-keel structures which

=%

interrupt the otherwise smooth stretches of ice on the underside

surface of Arctic sea ice. Furthermore, smail-scale roughness, due to

BEs

the rubble which makes up the keels, is superimposed on the linear

structure.
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Since a fundamental premise in the PE method is that there is
no backscattering, it is clear from the above that propagation 1loss
calculations emplaoying the PE method will likely contain very large
errors in an Arctic underice environment. One possible wmitigating
factor could be the use of low frequencies, as the local
backscattering strength of a patch on a ridge is, accarding to BRass
and Fuks [2, p. 1@81]1, proportional to the fourth power of the acoustic
frequency. Since mcit of the published data involves frequencies
greater than 1 kHz (Greene and Stokes (173, for example, exhibit plots
of backscattering strength at 1.81 kHz), the possibility remains that
the PE method will give reasaonably accurate results in the 108 Hz
range. Another factor to consider in this regard is that - PE
approximations are better at low grazing angles, which 1is precisely
the case for which the backscattering probability is greatest. To
more fully answer these questions, it will be necessary to carry out
detailed and precise Arctic experiments, similar to those undertaken
in the South Tasman Sea in 1975 and described by Guthrie and Gordon
ti181l.

The knowledge of bottom properties and gross sound-speed
characteristics alone will probably not be sufficient to obtain an
accurate model of acoustic propagation under ice. For example, there
may be energy loss as a result of made coupling, either from ice-
bottom roughness where there is na deep sound channel, or from
inhomogeneities within the water column in the boundary region between
different water mass types. The latter could be cauged, for example,

by marked changwes in salinity as the sound propagates past partially
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melted ice flows.

Since rays which propagate at steep angles are greatly
attenuated by radiation and bottom absorption, low frequency long
range propagation is dominated by rays having small grazing angles.
In this environment, therefore, the standard PE is usually acceptable.
However, when the reference wave number differs appreciably from the
wave numbers of the propagating modes, phase errors are introduced in
the standard PE. These errors are not reduced by reducing the range
step or increasing the number of FFT points in the split-step salution
of the PE. & major advantage of the wide angle PE is that these phase
errors are essentially eliminated.

The PE method has been applied to wide angle prapagation by
employing a more accurate, rational approximation to the square root
operator Q defined above. Claerbout [11] introduced this wmeans of
attack, by using (1+3x/4)/(1+x/4) to approximate (1+x’;, in glace of
the estimate 1+x/2 which results in the standard narrow angle PE. In
this context, "narrow angle" means less than about 15®°, while “wide
angle" is less than about 40°. A *very wide angle® (less than about
70°) PE, which utilizes a second order rational approximation for the
square root operator, also exists, but its utility has not been
demons trated.

Boundary fli:ctuations, source directionality and water column
variations are three mechanisms which can introduce azimuthal
variation in the sound pressure field. The development of three-
dimensional (3D) capability in the various PE models has only recently

been begun, and the results of realistic test examples are not
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available yet. Siegmann and Lee [391 offer a more detailed

explanation of why such techniques are important. They also develop
estimates of ranges for which a 3D PE would be valid. For example,
their estimates mean that at 158 Hz the range must be at least 4@ m,
while it must be at least 488 m when the frequency is 15 Hz.

ViI. Choice of Parameters

When studying ducted propagation in the ocean, there is
generally an optimum frequency to consider. Such a phenomenon occurs
because of competing attenuation and propagation mechanisms at various
frequencies. At high frequencies, scattering and volume loss simply
increase with frequency, but at low frequencies the situation is more
complex. Here the intensity of sound within the duct is affected by
propagation and attenuation wmechanisms in the bottom and otherwise
outside the duct. As sound penetration into the bottom increases with
decreasing frequency, the overall attenuation of sound throughout the
water column will increase as the frequency decreases. Therefore both
high and low frequeacies can result in high attenuation, with
intermediate frequencies having the lowest attencation. For example,
an optimum frequency on the order of hundreds of hertz occurs in a
typical shallow water environmant.

The importance of the choice of receiver depth is made clear
in the results aof Jensen (20). He discusses a simple example of
propagation in shallow (110 m) isothermal water, modeled by normal
mode theory, at a frequency of 100 Hz. In this case the theory and
experimental data agree extremely well. Both show a propagation loss

level that is 20-25 dB greater for a receiver depth of 1 m than that

C -16-




B EEE [F

s

L

s v ol
£

22 TER

~

=5 2 B2 R

LN
n

=E

o,
H 5

for a receiver depth of 58 m, over the entire range ot 38 km.

The ideal vertical step size in applying the gplit-step
Fourier algorithm to numerically solve the PE is @.Q}Sinﬁ, where & is
the wavelength and € is the grazing angle. This places an upper limit
on the number of modes, and hence the fwquency, that can be handled,
since computer run—-time is proportional to n log(n), where n is the
number of FFT points. A deterministic criteria for the ideal
horizontal step size, 4r, does not appear to be known, although it is
certainly limited by the frequency, and the magnitude of horizontal
gradients. In practice a trial and ervor approach is usually taken,
where 4r is decreased until the solution converges.

It is essential to the PE method that the initial pressure
distribution over depth includes full phase information (coherent
addition of modes). Three methods of starting the PE nodel are normal
mode theory, ray theory, and assuming a Gaussian-shaped initial
pressure distribution near thé source. The latter is appropriate for
deap water, because it filters out high-angle energy (which would be
lost anyway) and prevents aliasing of this energy inte low angles
during the FFT sampling process. Initializing the PE model by normal
mode theory requires a constant water depth for the interval in which
the mode theory is being carried out, and imposes an upper Llimit of
about 40 degrees on the equivalent ray angle. The ray starter seems
best for prapagation down the continenta. slope and into deep water.
In this case very high angle energy close to the source must be
considered, because of the considerable reduction in the angle during

propagation down the slope. On the basis of the requirement that
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energy which insonifies convergence zones when it reaches deep water

must be treated properly at the top of the slope, Guthrie and Gordon
{181 choose a vertical sample interval of Az=2H/Sm, where H is the
water depth and m is the highest order mode required in deep water.
Since at 186 Hz it is necessary to consider about 1580 modes in deep
water, a step size of 12 m is called for in 4500 m water. At the tap
of the continental slope, where H is about 3580 m, a step size of about
1 m is adequate.

In the extensive comparisons of experimental data with PE
model predictions described by Guthrie and Gordon {181, at frequencies
of 63 and 125 Hz, the range step size Ar varied from 18 m on the
continental shelf to 2088 m in deep water, while the depth step size Az
varied from 6 m to 12 m, with the greater 4z also taken in deep water.
However, they speculated that under certain circumstances a 4z of I m
or less would have improved the results, but such an option was not
available to them in their model. Thig indicates that the choice of
vertical step size must be made with considerable care. A4z must be
small enough to ensure that the highest order modes needed are sampled
properly, but not so small that computer run-time becomes excessive.
In the interest of efficiency, 4z should be chosen automaticaily by
the model to suit local conditions.

Jensen and Krol (191 carry out a detailed analysis of the
allowable range step, 4r, when the split-step Fourier method 1is used
to solve the PE. They conclude that for deep water 4r can be taken as
large as 1@2 or even 1008 m. In general, it is required to take Ar

inversely proportional to both the wmaximum vertical sound speed
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gradient and to the frequency. Furthermore, Ar is slightly dependent
upon bottom attenuation and source/receiver depths. They recommend,
as did Guthrie and Gordon, that 4r for a given propagation problem be
determined empirically, by reducing it until a stable solution has
been obtained. Finally, Jensen and Kral observe that in a shallow
water environment it appears that A must be extremely small.

VIII. Comparisons With Other Models and Experimental Data

In order to determine the accuracy and applicability of the PE
method, it must be compared with both experimental data and with the
predictions resulting from other models. While agreement with other
wmodels instills confidence in any particular method, the final check
on an acoustic model is a comparison with the results of realistic
axperiments. Only then should we be convinced that the model being
evaluated includes all of the necessary and correct physics and
mathematics for understanding and explaining sound propagation in a
real ocean environment.

An example of a complicated North Atlantic environment modeled
by adiabatic normal mode theory is presented by Jensen {201, The
water depth varies between 115 and 385 m, with a maximum bottom slope
of about 1°. The 45 km range is divided into two distinctly different
water masses, with two different SVP's. The bottom is also of two
typees, sand and s5ilt, with the changeover occurring at a range
different from that where the SVP changes. In spite of the difficult
enviraonment, Jensen found excellent agreement between theory and
experiment. Over almost & octaves (50-2540 Hz) of frequency, and over

the entire range of 65 km, the maximum deviation was only a few dEs.
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If the calculation times (which are not mentioned) required to obtainr
these results are at all reasonable, this strongly suggests tﬁat
adiabatic normal mode theory is a very viable alternative to the PE
methad for a range—-dependent environment. It should be emphasized,
however, that in this example an extremely detailed environmental
description plaged a crucial role in the achieved accuracy of the
modelling results.

A detailed experiment of propagation over a seamount is
described by Jensen ([2@1,[211), with the PE method used as a model.
Although he calls this a "strongly range-cependent environment (14°
mean slaope across the mount)," the SVP remains constant over the
entire 14@ km range. Thus the common terminology would refer to this
as a range—-independent case. At any rate, the agreement Detween
theory and expariment is uniformly good over the full 148 km rangg,
for frequencies ranging from 12.5 to 488 Hz. Moreover, in this case
the agreement is achieved without very detailed environmental
information. This indicates that the real SVP is well approximated
by the constant one that is assumed, and that the iaportant physics is
associated with reflection off the seamount and with propagation in
the water column. Thus these results can be somewhat encouraging for
the study of under-ice propagation, although backscattering off ice
keels and SVP changes due to salinity differences are still likely to
present significant difficulties, as described earlier.

Comparisons of normal mode, fast field program (FFP), and PE
wave theory models for test cases involving four different underwater

acoustic environments are described in [22] by Jensen and Kuperman. A
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split-step algorithm (PAREQ) is used to sclve the PE. The first case
involves a range—-dependent environment, where the SVP remains constant

fo

9

the firct 2@ km, transitions for 18 km, and remains constant again
for the finai 208 km. The frequency is 25 Hz. For receiver depths of
25, 250, and 488 m the three models agree quite well over the first 20
km. The norma} mode solution is stopped at this point, because of the
range—dependent SVP. However, when the FFF and PE saolutions are
continued  out to the maximum range of 58 km, they diverge
substantially from each other. Jensen and Kuperman argue for
accepting the PE solution, stating that °“the PE gives the correct
result in the range-independent part of the environment and be+~ause of
the mathematical nature of the PE solution there is no vsason  to
balieve that the accuracy of this solution diminishes in the aildly
range—depsndent region.® We question this argument, becausa of the
proot given earlier that the derivation of the PE implies a range-
indepandent SVP.

The second case in [22]1 is a range-independent environment
with different bottom speeds. The frequency is again 25 Hz., As the
maximum propagation angle increases with increasing bottom speed, and
as the standard PE is valid only for narrow angles of propagation, the
agreement between the PE solution on the one hand, and the apparently
accurate FFP and normal mode solutions on the other hand, deteriorates
with incredsing bottom speed. This offers a good illustration of the
need for the wide angle approximation to the PE, discussed elsewhere
in this paper.

Case 3 in [22) is a range-independent shallou water (100 o)
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environment, at a frequency of 250 Hz. With the source and receiver

depths both 58 my the agreement between the three models is excellent
over the full range of 1@ km, except for 3 unexplained isclated wpikes
in the PE curve, which overpredict the propagation loss by as much as
35 dB. When the source and receiver are located just off the bottom,
so that higher order modes are sxcited, the PE solution no longer
agrees 3s well with the correct normal mode and FFP  solutions. The
reason  for this 1is the incesased inaccuracy in the reference sound
speed when pore modzgs sre excited, as we discuse elsewhere.

Ths fourth case in [221 deals with a fairly complicated range-
independant environment, where the bottom is sloping and has a
sediment layer. The frequency is 25 Hz. Agreement between the three
madels is quite good, even ocut to a range of 1358 km.

In addition to the results of the four test cases just
described, Jensen and Kuperman (22] list ¢the basic numerical
parameters and associated computer times for the normal mode (NM) and
PE solutions. The depth step 4z varies from 8.9 m (case 3J) to 8.5 m
{(case 4) for NM, and from 0.246 & (case 3) to 11.2 1 (tase 2) for PE.
The range step Ar varies from 10 m (case 3) to 380 m (case 4) for NM,
and from 2 m (case 3) to 180 m (cases 1| and 4) for PE. The nuamber of
FFT points for the PE is 256 for case 2, and 1024 for cases 1, 3 and
4. The calcuylation time on a UNIVAC 1180/60 varies from ‘ess than 1
min (cases 2 and 3) to 2 ain (case 9} for NM, and from 1 min (csse 2}
to 32 wmin (case 3) for PE. The PE method 1s particularly slow when
there is heavy bottom interaction (30 min in case 3 and .5 min in case

4).
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Examples of the application of the IFD technique to several
problems are described by Lee and Botseas [25]1, and compared to
solutions obtained by normal mode theory, and by Jensen and Kuperman
(221 using the split—-step method of solving the PE. In general the
solutions agree quite well. The reader is referred to [25]1 for the
details.

Guthrie and Gordaon U[18] describe extensive propagation loss
calculations and experiments carried out in the south Tasman Sea in
1975, This appears to dbe the most definitive gtudy to date on the
appropriateness of the PE method in a realistic oc2an environmant.
The computer runs involve accurate bathymetric and sound-speed data
tor ranges up to 2580 ke at frequencies o¥ 63 and 125 Hz. Among the
interesting and important rasults obtained were:

1. Initialization of the PE model 1in a shallow, coastal
environment was accomplished by a vay trace and a normal nmode
praediction, and in both cases the models predicted absolute levels in
duap water that were within 5 dB of those obtainsd exparimental ly.

2. The aptimun wartical sample size was difficult to
determing when running a PE prediction from shaliow to deep water, or
vice versa.

3. The assumed proparties of the sedimant cover had a marked
effect uwpon the predicted acoustic shaduw of substantial underwater
features.

4. The model failed to gpredict an observed increase in shadow
depth with frequency.

3. The clarity of the converygence zone structure varied
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strongly with range, in certain range—dependent environments.

6. The predicted acoustics were very strongly dependent upon
the SVP, with even subtle changes in sound-speed profiles having a
marked effect.

7. At very low frequencies (16 and 31.5 Hz), the relatively
weak source level and high ambient noise conditions resulted in paor
quality data.

Several other detailed comparisons of experimental data and Pt
predictions are given by Guthrie and Gordon [18]. The reader is
referred to the original paper (which should be required reading for
anycne In the fiald) for the precise results. We only observe bhere
that, although agreements between experiment and prediction are
usyally reasonably good, discrepancies on the order of 1@ dB or wore
ave quite common. Moreover, on occasion the errors were so large 2s
ta render the particular PE model bezing employed uscless, and
requiring ad heoc adjustments to the model (such as chanqges in  the
bottom assumptions) to bring the predictions hdack into line with the
data. This clearly indicates tha importance of achieving accurate
knowledge of the propagation characteristics of the region in which
one wants to emplay the PE method, before the actual work i3 carried
aut.

Jensen and ¥Krol (19 give propagation loss predictions for
sevaral cases, employing the PE split-step model, a normal mode model,
and a ray-—tracing model. For a deep water (5800 m) range-independent
case, with a frequency of 180 Hz and a range of &5 km, the curves

generated by the three models agree very well. The range step 4 for
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the PE program is 1388 m. On a UNIVAC 11@4, the computation times
were & min for the ray program, 12 min for the mode program, and 24
min for the PE program. For a deep water range—dependent case, with a
frequency of 258 Hz and a range of 32 km, ray-tracing and PE
pradictions are compared with experimental data, and in both cases
agvexe2ant is quite good. 4r for the PE program is 188 m, and
calculat.on times are 4 hours for the ray—tracing program and 28 min
for the E program. For a shallow water range—independent case, the
results of a normal wmode model and the PE model agree very well.
However, a 4r of 2 m is required to obtain a stable solution for the
PE model. This small range step results in a calculation time of 3.5
bours for the PE program, whereas the mode program takes less than ane
min to execute.

The results of several numerical computations are shown in
{1]. They all deal with the case where the SVP is range—independent,
and the normal sode solution is used as a reference. For a narrow
angle (5.3%) test case, agreement between the normal mode solution and
the PE solution employing the IFD scheme with interface is quite good.
The phase error in the standard PE is evident in a wider angle (19%)
test case, but the wide angle PE gives excellent agreement with the
normal amode refterence solution. For a very wide propagation angle
(70%), no available PE method produces a satisfactory result.

Bates (3] implesented a range-independent, boundary—-free
exanple with an SVP chosen so that the wave numbers and wmodal depth
functions could be obtained in closed form. The split-step algorithm

tor solving the standard PE was then tested, by comparison with the
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closed form solution, for various choices of frequencies, number of
FFT pointsy and sogund speed gradients. To indicate the frequency
dependence, for a single propagating mode at 358 Hz, a range increment
of 480 meters and 64 FFT points was sufficient to generate results
within 1 dB of the closed form solution. When the frequency was
increased to 588 Hz (and all other parameters remained the same)!, the
error increased to 3 dB, and at ! kHz it was 11 dB. When the number
of FFT points was varied, with the frequency held constant at 1 kH=z
and 1 propagating wmode, & doubling in the number of FFT points
resulted in a reduction in the error by a factor of 4. For example,
the error was 42 dB with 32 FFT points,; 11 dB with 64 FFT points, 2.73
dB with 128 FFT points, and .47 dB with 2546 FFT points. As expected,
an increase in the sound speed gradient resulted in arn increase in the
error, and an increase in the number of propagating modes from 1 to 3J
caused the intraduction of phase ervors. It ig interesting %o note
that the magnitude of these phase ervors was independent of the number
of FFT points, at least for the limited number of examples considered
by Bates. Also interesting is the fact that all of the errors
discussed here were essentially independent of range, for those ranges
considered (up to 18 km).

Results of a test of the wide—~angle IFD model are reporied in
£5). The test case is a range-independent environment, with an
isovelocity water column over an isovelocity half-space bottom. The
frequency is 250 Hz, the water depth is 180 m, the maximum range is i@
ke, and the source and receiver are just off the bottom. Because of

this last condition the higher modes are more strongly excited, anc
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all 11 modes of this example are required for an accurate solution.
The reference solution is one gotten from the fast—-field program
(FFP), which has been compared with normal mode results and is
believed to be correct. In this test the wide—angle IFD results are
in excellent agreement with the FFP reference solution. When the
narros—angle (standard) IFD scheme is used, the expected phase errors
appear.

Comparisons of experimental propagation loss data with
predictions made by the PE method and by ray tracing are described in
té1, for convergence zone propagation over &8 km, at a frequency of
%@ Mz, with a range-independent SVP. The PE solution agreed with the
Qeasured data to within 1 dB, and the ray trace solution agreed within
1.% dB. Note that in this case, of the first convergence zone, there
is wvery littla bottom interaction, so that the bottoa handling
capabilities of the PE wmethod were not tested in this experiment.
Furthersore, when multiple SVP's measured along the propagation track
were input to the PE, and the resulting predicted propagation loss was
comapared with experimental data, the comparison was not significantly
better than that obtained previocusly by eaploying a single SVP over
the entire track. Thus, incorporating SVP range-dependence did not
appreciably improve the results.

Chan et al [91 point out the existence of an unconditionally
stable IFD scheee, which discretizes the standard 3D PE by means of
central finite differences for both the depth and azimuthal
derivatives, and then applies the Crank—Nicolson method. The results

appear to be reasonably accurate, but the scheme requires excessive
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computer time. In {91 they introduce a stability—generating

dissipative term into a basic finite difference scheme for the
standard Schrﬁdinger equation, and analyze and test the result. In
their test case this explicit scheme, using the same range step
(8.081im) as in the Crank-Nicolson implicit schene, produces
essentially the same results, but 3.5 times faster in terms of CPU
time. The actual computation times are not mentioned. The accurécg
of the computed solutions is measured by comparing them to what is
claimaed to be an exact solution, ussin(z)exp(im®)exp(im*/(2k,r)).
However, it is straightforward to show that if this function u
satisties the standard 3D PE, then X*=k,*(n*-1). Since« 1is constfnt
(TT/100 in their test case), this requires that n is also const;nt.
i.e.y the range—-independent case. In ract, the last equation gives &an
explicit relationship betueen «, kg, and n, which aust hold for this
test case to be valid., The test frequency is not mentioned in [9], so
it is not clear if this consideration was taken into account. The
test sound speed, however, was taken to be constant, by necessity (as

explained above), nat for ®simplicity® (as claiwed in [9]).

In £1@) Chan et al describe, in somewhat more detail than in
(91, varicus finite difference schemes for solving the PE. They
define a *practical stability condition,” and compare three stable
explicit fidite difference schemes with the Crank-Nicholson wmethod.
The greatly oversimplified equation u,=(i/2ky)u,y 1is used as a test
case, with a depth of 160 m, a frequency of 582 Hz, a constant scund
aspeed of 1500 m/s, a range of 280 m, a depth increment of 1 m, and a

range step of 2.0801 m.
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Apparently this small range step was required in order for the

four methods to agree with the exact solution to within 1%. 1In spite

of the simple equation being solved, the lack of variation in the

environmental parameters, and the short ranga, the CPU times required

were substantial. For the three explicit schemes, these times ranged

from more than 48 minutes to almost 1 hour and 22 minutes, while the

Crank—Nicholson method took over 2 hours and 7 minutes of CPU time.
IX. Possible Advantages of the Parabolic Equation Method

Although ray theory, particularly at bhigher frequencies,
generally requires much less calculation time than wave models such as
the PE method, ray theory is incapable of handling diffraction. This
causes a ray theory model to predict zero sound in shadow reQions
which, although unrealistic, might be satisfactory for the many
applications where the primary interest is in sound levels in the
insonified regions. In other cases, where diffraction is iasportant,
the PE method or some other wave model must be used, because only such
models accurately predict the frequency dependence of the diffracted
tield and hence give correct field levels in the shadow zones.

In a study of propagation in a uedge-shaped ocean with a
penetrable bottom {231, Jensen and Kuperman observe that the PE method
performs a reasonably good job of modeling the madal cutoff that
vccurs during upslope propagation. Adiabatic mode theory, ont the
other bhand, fails to give good resulits in this case, because of the
panetrability of the bottom.

In the PE model both the SVP and the bottom depth and

structure are allowed to vary in range. Attenuation in the bottoam is
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included, by introducing a complex sound speed.

Although the effect of ocean current profiles on sound
propagation is at least an order of magnitude less that the effect of
sound-speed profiles, the cumulative effect of current profiles may
cause significant changes in PE predictions of underwater acoustic
fields. The effect of current on reciprocity is more pronounced. It
is easy tc numerically include current profiles in the PE model, with
a negligible increase in program complexity or calculation time. In
cases where one is interested in absolute levels af propagation loss,
the ability to include currents is certainly an important feature.
When relative loss levels are cof concern currents would probably not
matter as wuch, since they would have the same effect on different
sianals of the same frequency. However, current considerations might
very well play a role in the choice of search depth and pitch angle.
Phu ard Tappert [33] give a detailed discussion of why and haw current
should be incorporated in PE models.

The phase errors inherent in the application of the standard
Aarrou-angle PE nave been essentially eliminated by development of the
wide-angle PE, The key to the derivation of the wide-angle PE is the
approximation of the square root operator, which naturally arises when
the PE is being formulated, by a nonlinear, rational function, as
opposed to the linear approximation which yields the standard PE. A
detailed derivation of the wide-angle PE is given by Siegmann,
Kriegsmann and Lee [(381. They include an error analysis, which uwe
believe is flawed, as described in this paper. A split-step algorithm

for the vwide—angle PE appears in the paper of Thomson and Chapman
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(43]1. They point out that existing computer codes for the split-step

solution of the standard PE can be easily modified to incorporate the
wide—angle capability, with very little change in computation time.
The PE method allows the acoustic wave equation to be treated
as an initial value problem, which is amenable to a marching solution.
In contrast the elliptic equation, from which the PE is derived,
requires boundary conditions which must be prescribed on a closed

surface. Thus the PE method is computationally much more efficient

.than trying to numerically solve the elliptic acoustic wave equation.

Also, it is claimed by Tappert and Hardin (421 that the split-step
Fourier methaod of solving the PE is wunconditionally stable, even when
the index of refraction n is a function of both range r and depth, ;nd
that the wmethad has second order accuracy in r. Thus, theoretically
if the range step 4r is sufficiently small, the inherent ereror in the
solution can be made negligible. Finally, Jensen and Krol (191 state
that the PE method yields a wave solution that includes all wmode
coupling and diffraction ettects.

The PE method is able to handle sloping bottowms. By
partitioning the range into increments in which the SVP is range-
independent, and then piecing these range increments together via the
split-step or IFD technique, the PE method is able to numerically
handle the range-dependent case.

Diffraction and all other full-wave effects, such as the
rigorous treatment o? caustics, are included in the PE method. Using
the standard PE, discrete wmodes are propagated with the correct

amplitudes and aode shapes, but with errors in the phase and group
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velocities. These errors are essentially eliminated by the wide-angle

PE.

A range—dependent environment may be treated by the PE method,
ty a ray madel, or by the adiabatic approximation to the normal mode
model. Of these, the first two are generally more accurate than the
third. The computation time required increases with frequency for
wave models {(mode, fast field, PE), while frequency doesn’'t effect the
time for ray models. The PE model requires essentially the same
calculation time for the range-dependent and range-independent cases,
while ray and mode models' time consumptions are proportional to the
nuaber of profiles.

X. Possible Disadvantages of the Parabolic Equation Method

Fvraccive ceomputation timecs required in a shallow water
environmant have been a major drawback for the PE method. Howaver,
Jensen and Kuperman (23] report increases in speed by a factor of 100
when the PE model is run on a dedicated computer system in connection
with an array gprocessor, as opposed to a general-purpose computer.
This obviously makes the PE a wmore practical alternative when
calculating propagation loss in shallow usater.

Computation time for the PE method increases with the square
of the frequency, s0 that it is impractical for higher frequencies.
Another disadvantage is that is difficult to handle shear propagation
in the bottom. Alsp, the PE method is thusfar unable to haendle
scattering. A possible wmethod of handling volume scattering in
acoustic propagation, by means of an ordinary differential equations

approach to the PE, is offered by McDanmiel, Saad and Lee in a recent
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paper [32]. Houwever, backscattering must be negligible for
application of the PE method.

Jensen and Krol [191] observe that steep sound-speed gradients,
such as those that occur at the water/bottom interface in shallouw
water, cause excessive computer run-times for the PE method. From
this, together with the claim that the PE method handles range
dependence in a simple way, they conclude that the primary application
of the method should be *low-frequency acoustic modeling in deep water
(no bottom effects) under range-dependent environmental conditions.®
Although the application aof the PE method to shallow water propagation
and the incorporation of bottom effects has been improved since 1975,
as described elseuhere in this paper, we question uwhether the methad
In Tdel Nandies ranys UERCHUENGE ah a  Simpis weyet  Jur  conozrnc din
this regard are described in detail above.

As pointed out elsewhere i1n this paper, the small range steps
necessary in the PE method when there (s a large vertical sound speed
gradient, such as in a shallow water environment at the water/bottom
interface, result in excessive computation times. Also, as the size
of the range increment in a numerical implimentation of the PE method
is inversely proportional to the frequency, the method rapidly becomes
too time-consuming as the frequency increases. At the current state
of the art in coding for the PE method, the upper frequency liait,
when the program is run on a computer such as the VAX 11/788, is about
588 Hz. On a super-computer this upper limit could obvicusly be
raised, while on a microcomputer the highest practical frequency would

be auch less than 388 Hz. However, if an efficient dedicated
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microprocessor could be developed, it is conceivable that frequencies
as high as 1 kHz could be handled by the PE method without inordinate
difficulty.

A starter solution, obtained from normal mode theory or some
other method, is required in order to initialize the PE method. This
can significantly increase the computation time required. Also, the
reflection that can occur due to a range—-dependent environment cannot
be accounted for by the PE method, since all energy is assumed to
propagate in the forward direction.

The direct modeling of boundaries is not allowed for in the PE
method. Surface wmodeling is accomplished by making the modal depth
function reflected about the surface with a 18@* phase change. Bottoao
absorption is accounted for by modeling the bottom as a change in
sound speed with an imaginary part.

Ellis and Chapman, in g3 recent and very interesting paper
[14], describe and combine all extensions to the Pekeris model, which
has proven to be a very useful tool in the study of low-frequency
progagation in shallow water, This simple model contains all the
basics of normal mode theory, and does not deal with the PE.
Nevertheless their results are of interest for the current study, botxy
A a aeans of comparison with PE results, and for the informative
light which they shed on shallow water, low-freguency propagation. In
particular, the wmodel accurataely predicts the very high losses at
frequencies less than 288 Hz resulting from shear waves in a chalk
bottom. The reason that the modified Pekeris model performs much

better in this environment than the usual normal mode models appears
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to be that the shear wave speed in the bottom is roughly of the same

order of magnitude as the speed of sound in water, whereas ather
normal mode models require that the shear wave speed be either much
less or much greater than the water sound speed. Whatever the reason,
the modified Pekeris aodel gives much better results, under these
environmental conditions, than any model based upon the PE that we
have seen. Hence, it should be considered as a very desirable
alternative to the PE method for low-frequency shallow water
propagation.
XI. Recommendations for Future Work

1. Development of a dedicated microprocessor, utilizing the
PE method to solve the wave equation. |

2. Determination of the speed and accuracy of the Pesogen
{Parabolic Equation Solution Generator) system, designed for shipboard
use by Tappert, Phu and Daubin. Information on this system seems to
be unavailable in the open literature.

I. Estimate the errors inherent in the PE, and in the other
adaptations of the acoustic wave equation.

4. Perform a sensitivity analysis, to determine the effect of
errors in the input parameters upon the solution of the PE.

5. Develaop 2 method capable of handling a rough surface, such
az will be encountered in an underice envivonment.

4. Develop a nmethod capable of handling scattering, such as
will be encountered in an underice environment.

7. Develop a very wide angle solution.

8. Develop a broadband capability.

( -3s-
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?. Improve the capabilities of PE models to handle three-
dimensional problems.

10. Incorporate the consideration of fronts and eddies in the
PE models.

11. Develop methods of more accurately measuring the sound
speed profile in an underice environment.

12. Develop more accurate methods of modeling and handling
surface and bottom boundary conditions.

13. Develop automatic step-size determination.

14. Develop the ability to handle shear waves.

15. Include wmultiple irregular interfaces in a practical
model.

X11. Conclusions

With the current state of the art in propagation 1loss
modeling, it appears hopeless to expect accurate absolute measures of
loss levels except in the very simplest of environments. However, it
is quite likely that reasonably good comparative measures are
attainable. For this to be useful when conducting a search, it is
necessary to have detailed knowledge of the environment in which the
search is being carried out, so that a basis for a valid comparison
will exist.

As described in the body of this paper, the parabolic equation
method will often be the method of choice when making propagation loss
predictions. However, as we have seen, a knowledge of the environment
is again crucial, since other methods are preferable under those

circumstances described previously.
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In general, good agreement between theory and experimental
data, whichever acoustic madel is being employed, requires accurate
knowledge of such environmental details as the SVP, bottom layering,
bottom rigidity (shear), scattering, etc., as well as the range-
dependency of these conditions. However, the required environmental
information 1is oftern unavailable. Furthermore, as acoustic models
become more sophisticated they require even more extensive knowledge
af the propagation environment. We believe that the primary
diffizulty today in ocean acoustic modeling is the lack of
sufficiently detailed and accurate environmental information for input
to the models. To us this appears more crucial than further
refinaments to the models themselves. As environmental details ' are
generalluy difficult and expensive to obtain, a knowledge of the
accuracy required in the input data to the various models, in order to
obtain sufficiently accurate propagation loss results, would seem to
be extremely important. An analysis of this crucial question is

strongly recommended.
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Abstract

A nearly ideal notch filter, employing coefficients of equal
magnitude, is described. Applications to the design of transmitting
antenna arrays are discussed briefly. The construction is based upon
earlier work of the author involving polynamials with restricted
coefficients.
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Figure Captions

Figure 1. A graph of ‘Q(O)I for N=6@, in dB's.
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A Notch Filter Emplaying Coefficients of Equal Magnitude
J. 8. Byrnes, Senior Member, IEEE
Prometheus Inc.
183 Mansfield Street
Sharon, MA B32Q47
Abstract
A nearly ideal notch filter, employing coefficients of equal
magnitude, is described. Applications to the design of transmitting
antenna arrays are discussed briefly. The construction is based upon
earlier work of the author involving polynomials with restricted
coefficients.
I. INTRODUCTION
The classical mathematical problem in notch filter design is
to produce a polynomial whose magnitude on the unit circle is close to
constant in almost all directions, but which has a small number (i.e.,
1, 2 or 3J) of deep nulls ("notches®) at specified points. Such
filters are applied, for example, to remove spectral lines from
otherwise broadband spectra. In this paper we produce such
palynomials having one null, with the added feature that all
coefficients have the same magnitude. For convenience this magnitude
is assumed to be one. Observe that this “unimodular® property allouws
the direct application of these polynomials to the design of
transmitting antenna arrays which are omnidirectional except for 1
null. This feature is crucial in certain communications areas, where
it is desired to null out one listener in a known direction while at

the same time, for maximum efficiency, all antenna elements are
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broadcasting at full power.

If the polynomial P(z) is of degree n—-1, it is clear from the
Parseval Theorem that its L2 norm (i.e., RMS value) is exactly nt*7=2,
since there are n coefficients each of magnitude 1. Thus, for lP(z)l
to be close to constant on ]zl=1, that constant must be ni“2, The
question of the existence of such poluynomials is a classic one in
mathematical analysis. Its study was apparently initiated by Hardy
C11,p.1991, and furthered by Littlewood [8,91, Erdos £51, Newman
£(1,2,3,10] and others. A basic result concerning these problems was
obtained by the author [431, which paved the way for solutions, by
Korner [71 and Kahane (61, of two of the fundamental conjectures in
this area. We modify the constfuction given in [ 4] to produce nearly
ideal filters with one notch.

II. APPROACH AND RESULTS

Our starting point is the polynomial P, of degree N2-1, given

by
N-I N-I

P(O)= 2: é;}xp (2TTijkN=3) zd=un_ zooyp (21ITi0).

k=0 jZO

It is shown in [41 that P(®) satisfies:

(i) ‘P(mN")FN far all integers m,
(ii) For any €, N-*<€<1/2, 1P(G)[=N+E for (3/9151/2, where
IE[ A+2TT-245(TT €)1,
(iii) For N odd, P{1/2N)=0(1), while for N even, P((N-

1)/7(2N2))=0(1), and




(iv) 1P(G)I<(2+3ﬂ"1)N + 0(1) for all ©.

Recent numerical evidence suggests that (iv) can be strengthened to:
(iv') P l<i.4N for all o.
Thus, as N-2w, the magnitude of P is asymptotically close to the ideal
constant N except for the immediate neighborhood of one point. By a
simple change of variables it is clear that this special point can be
taken anywhere on the unit circle.
If P(O®) is changed by removing the first N terms, all of whase

coefficients are +1, and then dividing by z™, there results

N-1 N-1
Qo) = Z Zexp(miJkN-‘)zJ*‘““’“.
kz | J=O

This Q, which is of deqree N2-N-1, is the desired modification of P.
In fact, for -0=@ the terms in the inner sum for Q are identically O,
50 that Q(®)=0. Also, the N terms removed from P are significant only
in the immediate neighborhood of =0 (i.e., the special point), so
that estimates (ii) and (iv') remain true for Q. Furthermore, it can
be shown that the null width of Q is less than 2/N. These properties
tagether with fiqure 1, which exhibits 10(6)1 in dB’s as a function of
© for N=68 ( of degree 3539), show that Q is indeed the nearly ideal
notch filter discussed earlier. Once again it is clear that a change
of variables allows the relocation of the notch to any desired €.
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ABSTRACT

Several new designs of analytic null steering algorithms for
linear arrays are described. Two of them, the #~Technique and the
Positive Coefficient Model, allow for olacing an arbitrary number of
nulls in arbitrary dJdirections, while maintaining main beam and
sidelobe level control. A method of incorporating these deterministic
null steering techniques into existing adaptive algorithms, offering
the possibility of increases in array performance at small cost, is

currently being researched.
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In view of the well-known one—to-one correspondence between
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polynomials and linear arrays with commensurable separations between
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elements, as described in detail by Schelkunoff (9], null steering

questions involving such arrays translate directly into mathematical

2

praoblems regarding the 1locations of zeroes, on the unit circle, of

polynamials. Furthermore, physical and electronic limitations placed

upaon the array elements, such as a maximum allowable transmitting power

aor a bound on the dynamic range, imply various restrictions upon the

y =2

coefficients of these polynomials. Here, dynamic range refers to the
ratio of the magnitudes of the largest to the smallest weight, or

shading coefficient, of the array. Thus, the theoretically challenging
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question of the placement of zeroes at specified points on the wunit
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circle, of polynomials whose coefficients satisfy certain restrictions,

is also a problem of strong practical interest to antenna designers.

The design of filters is another application in which such

questigns arise. For example, the classical mathematical problem in

notch filter design is to produce a polynomial whose magnitude on the
unit circle is close to constant in almost all directions, but which has

a small number (ie, 1, 2 or 3) Of deep nulls ("notches®) at specified

it
B

points. In [3) the construction of (41 is employed to produce such a

polynomial having one nulil, with the added feature that
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all coefficients have the same magnitude. Hence, the dynamic range of
the notch filters presented in [5] is one.

This paper addresses the null steering applicatf@ﬁ described
in the first paragraph. There are several factors which muét be
considered in the design of null steering algorithms. In addition to
the basic problem of placing the nulls the main beam must be steered,
the width of the main labe controlled, and the sidelobe levels must be
sufficiently belaw that of the main lobe. Conirol of the sidelobe
leval is usually achieved by attenuating the shading coefficients as
one moves away from the center of the array. Often these attenuat{pn
factors (Chebyshev, Taylor, etc.) are chosen in advance; and may not
be easily altered once the array is in place. This leads directly to
a beautiful mathematical question, similar to the peak-factor problem
in engineering attacked by Boyd [2], Schroeder [1081 and others:

Given the magnitude of the coefficients of a polynomial P, a

=

finite subset S5 of the unit circle C, and & point pé€l distinct
from those in S, choose the phases of these coefficients Qo
that P(z)=0 for all z<€S8, the maximum on C of lrcz)!| occurs at
2=p, and the maximum of Ir¢z)l on a subset of C excluding an
appropriate iqterQal {the beamwidth) araound p is as small as
possible.
We consider various subproblems in this paper. Research on the
general question is continuing.
I1. DIRECT ADAPTIVE NULLING ; '

Currently the most widely used class of null steering methods

is known ag adaptive nulling [01,3,6,7,8,121. Adaptive arrays have




develaped over the past twenty-five gea?s as the preferred methad of
reducing the performance deterioration in signal reception systems which
is inevitably caused by noise entering the system. These methods, such
as the Widrow LMS Algorithm and the Howells—-Applebaum sidelabe
canceller, are indirect adaptive schemes, they da not explicitly form an
estimate of the directions of arrival of interfering sources or
explicitly steer nulls in those directions. A scheme in which these two
tasks are actually performed can be called a direct adaptive algorithnm.
Thus one possible approach to the solution of many of the well-knoun
performance problems which arise with existing methods is to complement
an appropriate indirect adaptive algorithm with the analytic null
steering methods described herein. In this way the actual noise
suppression achieved might be enhanced beyond that which would be
available through either adaptive or analytic methods exclusively. In
addition, since each execution of our analytic algorithms is essentially
instantaneous, and since a direct scheme allows much greater use of
prior knowledge, such as known jammer locationrs or known multipaths,
this interactive direct method offers the possibility of increases in
performance at small cost. Research on this approach, which we call the
*Direct Adaptive Nulling System,® is in progress.
III. COEFFICIENTS OF EQUAL MAGNITUDE

An important subproblem of the general mathematical questian




described earlier 1is the case when all of the coefficients of the
polynomial have the same magnitude, which, by normalization, we can
assume to be one. Such phase-only shading eaccurs, for ex;mble, in the
design of transmitting arrays which are omnidirectional’ ex;epf for
specified nulls. These features are crucial in certain communications
areas; where it is desired to null out listeners in known directions
while, at the same time, for maximum efficiency, all antenna elements
are broadcasting at full power. Also, in order to minimize the
relative size of the quantisation steps in a gradient algorithm such
as LMS, the coefficient magnitudes should be kept as close as possibie
to unity [7, p. 1531. Note that this ®"equimagnitude® prupértg of ;he
coefficients precludes the use of attenuators, with the concomitant
savings in electronic harduware.

The most elementary example of the above is the unshaded array
-~ all coefficients are 1. In spite of its simplicity, this uniform
array is of practical importance. Observe that in this case the
zeroes of the polynomial are almost uniformly spaced around the wunit
circle, occurring at all of the n+l=* (uhere n is the degree of the
polynomial) roots of unity except 2=1, where there is a maximum. i

At the nther axtremg is the case where an n-fold zero is
required at one point. One application of this, as discussed by
Steyskal [11], is to broaden a pattern null so as to null an entire
sector. Clearly, by a simple change of variables, this zero-point can
be lassumed to occur at z=i, It is a straightfcrwéra matter to
construct such a polynamial with coefficients of magnitudg 1; in fact,

the coefficients may all be taken to be *1. Namely, define P(2) by:




n-1
P(2)=T"T(1-22") (1)
m=0
The problem with this construction is that, although F(z) obviously
satisfies the required properties, it does so at very high cost.
Since P has degree 2n-1, its realization requires an array with 2»
elements. We show in the following theorem that, for all but small
values of n, this situation may be greatly improved by allowing
coefficients to be @ as well as #1. Since this simply means that some
array elements are turned off, the dynamic range of the coefficiegts
is not affected in any meaningful way.
Thegrem I Let n2i@. Then there is a polynomial P(z), of
degree less than n®, such that P(z) has an n-fold zero at z=1, and all

the coefficients of P are either *1 or 0.
Proof of Thegrem 1 Given n21@, choose k so that
2
282k" (2).

Since x/1ln(x) is increasing for x>e, and 16/1n{10)>3/1n(2), the choice
k=n3 certainly implies (2). Actually, for any €0, it is clear that
for n large enough we may take k=n2+¢, but such precision is not
necessary here. No@, for e@ach arbitrary subset § of the set of

\

nonnegative integers less than k, let

Q(z)= S_:z"'.
neS
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and form the vector
(Q{1), Q' (1), Q"' (1)/2' Q™22 (1)/(n-1)').

These are integer vectors, and the largest entry is bounded by

k-}

Z “l““(k“-

ms=0

Thus there are less than k*asuch vectors. Since there are 2% subsets
'S, and so 2% polynomials Q, equation (2) implies that at least tuwo
distinct polynomials, say Q.(z) and Qa2(z), have the same associated
vectnr.. Hence P(z)=Q,(z)-Qa(2) is the desired polynomial, and Theorem
I is praoven.

The idea underlying equation (1), which we call
*encapsulation,* may also be employed to construct polynomials with
coefficients of magnitude 1 that place any number of arbitrary nulls,
Namely, we have: i

Theprem II For any positive integer n, let Cz-ql' be an
arbitrary set of (not necessarily distinct) points on the unit ciréle.
Then there is a polynomial P(z2) with cecefficients all of magnitude.l,
of degree 2%™-1, satisfying P(za)=0, 14mgn.

Proof of Theorem II As indicated above, we simply produce an

explicit formula for P(z):




It is straightforward to see that this P(z) satisfies the required
properties, establishing Theorem II.
IV. SIMULTANEOUS NULL STEERING AND MAIN BEAM PLAbEMENT

In the previocus section we attacked the sprroblem; of the
general question stated earlier, which arises when the dynamic range
of the coefficients is required to be one. We now consider another
aspect of the original problem, perbaps of more interest to antenna
designers. Namely, =~ how can arbitrary nulls be placed while
maintaining a specified wmain beam direction and specified maximum
sidelobe level? We describe two methods, the A-Technique and the
Positive Coefficient Model, of achieving these goals. )

To sat the problem; again let n denote any positive integer,
and let Sntz-qz' be an arbitrary sat of (rnot necessarily distinct)
points on the unit circle. Also, let zq be a point on the unit circle
distinct from those in 8. Our methods allow the placement of zeroes
of a p ynomial P at all points in 8, while simultaneously having the
maximum of Pl on the unit circle occur at 2=Za. Furthermore, -the
difference betueen IP(z.)l and the highest sidelobe can be wmade
arbitrarily large. As will be seen, the costs encountered T in
achieving the last property are an increase in the degree of P, and a
loss of contrel of the dynamic range of the coefficients,

To proceed with the constructions; define the angles [Om],
@<m<n, by zweexpl(id.), =-IKO.4T. As before, a simple change of
variables allows us to assume 9e=@, so that ze=1. Ct
Method 1. The A-Technique

n
Let d=-cot=*(2 | cot(@m/2)1, z==exp(id),
mz)

E-7-




and define Q(z) by

Q(z)=(z—z“)f%’(z—zm).
mz|

A straightforward calculation shows that lQ(z)I has a realative maximum
at z=1. Hence, for c a large encugh positive integer,
P(z)=(1+z)=5Q(z) will certainly satisfy the required praperties{ It
can be shown that, in order to guarantee an absolute maximum of LP(z)l
at z=1, it is sufficient to take c=ﬁ/€L where €=min[e-l. O0f course,
in order to further increase the main lobe level relative to the
sidelaobes, it will be necessary to take c larger.

Method II. The Positive Coefficient Model

For each m, 1<m&n, choose the smallest positive integer km

such that exp(ik.®«) lies in the left half plane, and define P(z) by

n k k k =
pcmr= TT (an_zmn)(im_z‘m}e

m:]

Clearly P(2) has the necessary zeroes. Furthermore, all of the
coefficients of P are positive, so that the maximum of IP(z)l on the
unit circle obviously occurs at z=1. Once again it is simple to
further increase the main lobe level relative to the sidelobes, by
multiplying P(2z) by an appropriate positive integer power af 1+z.
There are two additional points which can be made about the
Positive Coefficient Model. One is that its electronic implementation

will be greatly simplified as compared to that of arbitrary shading

coefficients, since the positivity eliminates the need for phase




shifters. A second 1is that some control of the dynamic range of the

coefficients can be achieved by combining this method with the
encapsulation technique discussed earlier, if we again ignore the
effects of @ coefficients.
V. CONCLUSION

Various aspects of a fascinating problem in classical
mathematical analysis, with diraect applications to antenna array design,
have been discussed, and several results obtained. Foremost among these
are two analytic methods for placing an arbitrary number of nulls in
arbitrary directions, while maintaining main beam and sidelobe level
control. A method of incorporating these analytic null steering
techniques into existing adaptive algorithms, offering the possibility
of increases in array performance at small cost, is currently being

researched.
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Abstract
Precise estimates were previously obtained for the evror in
the optimum gain of an antenna array arising from errors in the
measured noise covariance wmatrix. It was observed that the error
estimates are a function of the character and spatial distribution of
the noise field. The purpose of the current work is to analyze this
dependence of the previous results upon the quantitative and

qualitative aspects of the noise field.
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A. Introduction

In (1] the question of the effect of errors in the measured
noise covariance matrix upon the gain of an gntenna array was ;ddressed.
Precise error satimates were obtained for the case of a linear array of
n equally gSpaced elements in a noise ftield made up of spatially
uncorrelated point sourzas of a single frequency. Note that under these
conditions the noise covariance matrix is Hermitian, positive definite
and Toeplitz. It was observed in [1] that the error estimates were a
function ot the character and spatial distribution of the noise tfield.
The purpose of the current work is. to analyze this dependence of the
previous results upon the quantitative and qualitative aspects of tha
noise tield. Several of the results given balow were announced in [21.
A signiticant imaprovesent in the major result (Theorem C), as well as
proots for the previously anncunced theoreas and a discussion of theis
iaportance, is given herein.

B. Results

The notation will be the same as that in (11 and 023, so that n
is the number of antenna elements, R is the true noise covariance
matrix, 3 is the seasured noise covariance matrix, Eﬁa—R is tha earror
vatrix, 1] is a norm on the space of all n x n matrices, and tslls!l.
Far weight (i.e. *shading®) vector W and signal vector S the gain is
given by

T
!m .s;‘ a

Gm _—
W Ry

dhen W is chosen to De an ideal Wiener weight vector,

WeR—LS

b o-1-
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the resulting G is known as the optimal gain. Since the measured noise
covariance matrix 8 is; by necessity, empluyed in obtaining the actual
Weiner weight vector

AN

W=R—-1g,
the actual gain will differ from the optimal gain G. Denoting this
actual gain by E, it is seen that

tA
(3 R~25)=

+ A A
S R™*RR-S
thg'that the true noise covariance matrix R appears in the denominator
of G.
In order to determine the effects of the noise field upon the
gain, the following result from (1] will be employed:
Theorem A L1, Corollary II1l. For any small enough positive numbar
Ev
G

— -1« 16”R""”‘”R“ aga,
&

It is clear from Theorem A that what i3 now required is an
analysis of how the neorms of the naoise covartance natrix and its inverse
depend upon the noise field. As {5 well known, the detarmination of the
norm of a watrix, except in very special cases, is no easy mattor., Even
for the particular class of matrices consicdered here (i.e., Hermitian,
positive definite, Toaplitz), precise estimates fcr the norm are

difficult to attain. The mast tractable norm to deal with in this

F-z-
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context is defined, for an a x n matrix A, by:
UAHa = Haxlgfﬁxl,

where the maximum is taken over all n-vectors x and y with Euclidean
norm 1. If A is Hermitian and positive definite, and if Rr,lt,...,},
are the (necessarily real and positive) eigenvalues of A written in

increasing order, it fcllows from the standard theory that

”AUQ = ;Ln and

s

Hence, accurats astimates for the smallest and largest aigenvalues of R

are raquirsd,

Consider a model of an isotropic noise firld plus a single point

source of noise which is generating a plane wave signal. Letg,! be the
power of the isotropic noise, Gg* the point source pouwer, )\ the
wavelength of the noise, and asnume the array spacing to be A2, In

addition, defing the ratia T'bgz

RN
&

]"‘: = - . (2)
5 G,

§§ As is well known (LeBlang, p. 12, for examplel], the normalized noise
)

't

covariince matrix under these conditions is given by:

s
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A straightforward computation shows that:

Eigenvalues (R)=1-T,1-Y,...,1-T,1+(n-1)7,

| (#)

so that |[Rl]=1+(n-1)T and ﬂR"*/{: —

It the model is altered by changing the wavelength of the point
scurce, so that the array spacing remains at one-half wavelength of the
isotraopic companent, but not of the point source, the normalized noise

covariance matrix becomes:

T, e, - - - X

n=|
S (A (4
A= T“L TC_’ / -t YC”_-’ (S)

C
L A&

where Cozptm<e esa v daarray spacing, t=angle of arrival of plane wave
(t=8 is endfire), and K is the wavenumber of the point source. Note
that c..pE; and also that ca=c™, where c=et™" «==s <+,

It is surprising that the eigenvalues of R are identical to the
previous case. Namely, .

Theorem B. Let R be given by (3). Then the eigenvalues and

F -4—
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norms of R are those appearing in (4).

Proot of Theorem B. Let I denote the identity matrix, U be the
matrix all of whose entries are 1, and V be the matrix R of (3) with all
of the T s replaced by 1. Thus R=(1-T)I+JV. In addition, V may be

tactored, giving

T

« O O
Q —
N Q
Q

v

'
i

L 4
Lal]

H.
0oo.--21 lo 2 - -+¢C

.

From this factorization it follows that
sigenvalues (JV)=T eigenvalues (U)=2,8,...,3,Tn.
But the above expression for R implies ¢that ). is an eigenvalue of R if
and only if'TLXﬁL is an eigenvalue of TV, and Theorem B is proven.
Caombining Theorems A and B immediately yields the desired error

estimate:

Thecrem C. Let R be given by (S), and let G, G, £, T be defined

as above. Than, as long as € is small enough,

S . ! 2 2
= 1< e (+0-)T) €

and this estimate is best possible.

Now consider a model of two point sources of noise, generating
plane wave signals of power 6}‘ and €4 respectively, plus an isotropic
noise field of power €,%. Let K, and K, be the wave numbers of the

point sources, t, and t, the angles of arrival of the plane waves, d the

F-s-
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array spacing, and assume again that d=A/2, where ). is the wavelength of

the isotropic noise. Defining T, dy, Emsxc y and fiy by:

T- 6:‘-}- 6’.1. J -eLMKgd cos tg - “”\thwtt
- y d-\t * ] m“ )em‘& )
6" +6, + G,

-~ T
<z O cxno( fm=‘(t7{m+(/-o()e
1 v m
R

the normalized noise covariance matrix is:

TS 15 - . - Ts

n-}
T 0 TE L TS,
R= ‘7'.5:-1. Tf_‘ | P .—7'._5_;-3 . (&)

j’{nﬁ T !

Theoram B can be applied directly to obtain an upper bound for
!iRl‘. To see this, let A denote the matrix R of (&) uwith fy replaced
by dey and let B be R with fy replaced by Qy. Thus R=xA+(1-X)B, so that

Lirl|ectlallecioo Bl lateneiT. 7
Clearly estimate (7) cannot be improved without additional assumptions
ragarding the relative sizes ot Grtand 6:1, so that in the general case
(7) is best possibla.

As often occurs 1p estimation problems, the lower bound on the
gigenvalues ot R is considerably more difficult to oaobtain. It appears
necaessary to employ asymptaotic estimates, such as the following theorem
CGranander & Szego, p.441:

Theorem D. Let f(x) be a real-valued, 2T-periodic, Lebesgue
intagrable function with Fourier series f(x):gazexp(imx). (Nate that

ta=f_u). For each tixed n, n=1,2,3,..., let the (necessarily Hermitian,

Toaplitz) matrix (fa—wl, mykel,2,...,0, have (necessarily real)

b -o-
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eigenvalues h,‘"‘g;\,‘ﬂg...g)ﬁ n), Finally, let M; be the essential inf
of f{x), and let Mz be its essential sup (My=-w and/or Mz=c0 are

allowed). Then

(E)
Mig L )ﬁ)_:")gna,, and
f

(8)
{n)

lim & =My; lim ZL =Ma.
n-> n=yo

To apply Thearem D to estimate the smallast eigenvalue of the
matrix R given in (&), first approximate R by multiplying each ﬂﬂ by the

-

‘convergenca factor® ﬂ"ﬂ, where B8<r<l and r ig close to 1, so that now

m ¢ Kl tl . <
{,\:Tr' [ (‘(&m d s +(1-o<)e.LMK1 as T,

and §(x) :' I+—ro( f rlml&l'-"{lc Jc“f'*.x) ( ) Z ’_Jnl av\(‘rd(co,f+x)

o e
. )
z [+ T Z r{cos m(K‘ a(m;f,fl')f-(: Sin m(f\"a(m‘l;-fx)
ms.o o0
SRS b N
nto

Applying the standard formula for the Poisson kernel, along with the
tacts that the cosine function is even and the sine function is odd, to

(9) yieldss | Ft
(%) = T = —— -~ - L
aa)
+TT (- «)[ --'—].

I-'U‘co.s’ (K a((.o;t‘.‘-rx)-f-kt l

Clearly, for any values of K,,t,,K,, and t,, there will be values of x

such that the first terms in each aof the square brackets in (10) can he

F -7-
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arbitrarily close to Uhsimuléaneouslg (for r close enoujh to 1), so that

the best possible lower bound for the smallest eigenvaiue of R given by
(6) is 1=-T. Applying (1), (7) and Theorem A to this yi=lds:
Theorem E. Let R be given by (&), and let G. @;C ;T be defined

as above. Then, as long as £ is small enough,

S ('mn-:)’rza‘
| (:-T)*

«y

)

G

/’

and this estimate is best passible..

Next consider a model where R is a real, tridiagonal matrix.

Thus, for some real number b:

R= . ()

As is well known ([Morgera andg Cooper, p. 732 for examplel, the

eigenvalues of this R are:

“Thm
- - ! U‘M: / z. L }1 .
}‘M / Z\[) 4] el - 7 J (12)

Assuming 2b<l, in orcder to guarantee that R is positive definite, it is
clear that the best Jossible bounds for the eigenvalues given in (12)

ares:

1—2b€}'€2n<1+2b. (13)

Combining (1) and (13) with Theorem A proves:

¥ -8-
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Theorem F. Let R be given by (11), assume 2b<1, and let G, ?S-,C,

be defined as above. Then, as long as £ is small enough,

G _ / T 4
‘—g-— l/(lém(l-ﬁlb)&
and this estimate is best possibhle.
Finally, the complete eigenspectrum for real, symmetric ?atricus
of orders 3 and 4, and the partial eigenspectrum for such matrices of

order 3, have been computed explicitly. By various complex algebraic

manipulations, with

n 1 a b ¢ d
| a b a o ¢ a1 a b ¢
R:{'OLIQ"Q.,,:Q’ b,ano(@-;bqlab’
b a | ba ' a ¢ b a | a
< b-a i __d c b a |
the following table may be derived:
n Eiﬂehva‘llé’ Of Rh E"’we'c’-ﬁrj of Rn._
< )]
3 IEH 51% + 20" of v, me_ +a
- (-1 L brJiT+gat
ll — —
ot _ a-c*u .a+c+V u:&a.c)"w-(wé)"
¢ [+ k N a+CE V 2la-by WA”&

T T G-C+M p) q—;%;'%% V=\b-c)1+ S‘(q-é)l

Ca-c),@-r-l-b [d ro- '8‘7 where
4= 5-0(1‘1)(4-0()1-;.5‘(4-:)[

Z (q-c)

Table 1. Eigenvalues and Eigenvectors of Real, Symmetric Matrices

F-9-
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Concentrating fo* the moment on n=3, assume that there is a
real-valued point source of noise of the form &g slcos(Kd cos t) in an
isaotropic noise field of power G,*. Defining T by (2) and setting w=Kd

cog t, the normalized noise covariance matrix is now:

“ Tasw  Seas w
Ry Teos w - Tias W . (14
Ycostw Jeas w /

The eigenvalues of 33 may be computed exactly, and the result is
that they are i-J, 1-Jcos 2w, and 1+J+Tcos 2w. Applying (1) and Theorem
A yields:

Theorem G. Let R be given by (14), and let G, Eﬂ& +J be defined

az ahove. Then, as long as £ is small enough,

G / 1 te
-:G-..-—« l(léw(h‘-ty) &£,
and this estimate is best possible to within a factor of 4.
A similar result holds for n=4. The complete eigenspectrum for n=5 was
not darived in a meaningful form.
C. Conclusion
It is clear from the cases examined in Theorems C through G that
.
the angla of arrival of a plane wave from a point source of noise is nat
the crucial issuwm, when considering the accuracy required in measuring
the noise covariance matrix of a linear array of equally spaced
elenents. The overiding concern is the relationship betueen the power

ot the point source and the power of the isotropic background noise. If

: -10-
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the ratio of the point source power to the isotropic power is very large,

then extremely accurate measurements of the noise covariance matrix are
required in order to get a reasonable estimate of the gain of the array.
The same applies when there are two localized noise sources in an
isotropic background, such as occurs with torpedo flow noise and
structural vibrations. Note the concurrence of these conclusions with
those of Hudson, who obsarves that the noise covariance matrix will
usually be ill-conditioned when there is a relatively weak uncorrelated
noise component in interference that is due to a small number of discrete
sources (less than the number of array elements) [4, p.1361].
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